Visible to the public Biblio

Filters: Keyword is blockchain protocol  [Clear All Filters]
2020-11-09
Bose, S., Raikwar, M., Mukhopadhyay, D., Chattopadhyay, A., Lam, K..  2018.  BLIC: A Blockchain Protocol for Manufacturing and Supply Chain Management of ICS. 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). :1326–1335.
Blockchain technology has brought a huge paradigm shift in multiple industries, by integrating distributed ledger, smart contracts and consensus protocol under the same roof. Notable applications of blockchain include cryptocurrencies and large-scale multi-party transaction management systems. The latter fits very well into the domain of manufacturing and supply chain management for Integrated Circuits (IC), which, despite several advanced technologies, is vulnerable to malicious practices, such as overproduction, IP piracy and deleterious design modification to gain unfair advantages. To combat these threats, researchers have proposed several ideas like hardware metering, design obfuscation, split manufacturing and watermarking. In this paper, we show, how these issues can be complementarily dealt with using blockchain technology coupled with identity-based encryption and physical unclonable functions, for improved resilience against certain adversarial motives. As part of our proposed blockchain protocol, titled `BLIC', we propose an authentication mechanism to secure both active and passive IC transactions, and a composite consensus protocol designed for IC supply chains. We also present studies on the security, scalability, privacy and anonymity of the BLIC protocol.
2020-09-28
Yang, Shu, Chen, Ziteng, Cui, Laizhong, Xu, Mingwei, Ming, Zhongxing, Xu, Ke.  2019.  CoDAG: An Efficient and Compacted DAG-Based Blockchain Protocol. 2019 IEEE International Conference on Blockchain (Blockchain). :314–318.
Blockchain is seen as a promising technology to provide reliable and secure services due to its decentralized characteristic. However, because of the limited throughput, current blockchain platforms can not meet the transaction demand in practical use. Though researchers proposed many new solutions, they suffered either decentralization or security issues. In this paper, using Directed Acyclic Graph (DAG) structure, we improve the linear structure of traditional blockchain protocol. In the new structure, blocks are organized in levels and width, which will generate into a compacted DAG structure (CoDAG). To make CoDAG more efficient and secure, we design algorithms and protocols to place the new-generated blocks appropriately. Compared with traditional blockchain protocols, CoDAG improves the security and transaction verification time, and enjoys the consistency and liveness properties of blockchain. Taking adversary parties into consideration, two possible attack strategies are presented in this paper, and we further prove that CoDAG is a secure and robust protocol to resist them. The experimental results show that CoDAG can achieve 394 transactions per second, which is 56 times of Bitcoin's throughput and 26 times of Ethereum's.