Visible to the public Biblio

Filters: Keyword is trajectory privacy  [Clear All Filters]
2023-06-22
Xu, Yi, Wang, Chong Xiao, Song, Yang, Tay, Wee Peng.  2022.  Preserving Trajectory Privacy in Driving Data Release. ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :3099–3103.
Real-time data transmissions from a vehicle enhance road safety and traffic efficiency by aggregating data in a central server for data analytics. When drivers share their instantaneous vehicular information for a service provider to perform a legitimate task, a curious service provider may also infer private information it has not been authorized for. In this paper, we propose a privacy preservation framework based on the Hilbert Schmidt Independence Criterion (HSIC) to sanitize driving data to protect the vehicle’s trajectory from adversarial inference while ensuring the data is still useful for driver behavior detection. We develop a deep learning model to learn the HSIC sanitizer and demonstrate through two datasets that our approach achieves better utility-privacy trade-offs when compared to three other benchmarks.
ISSN: 2379-190X
2022-04-26
Feng, Tianyi, Zhang, Zhixiang, Wong, Wai-Choong, Sun, Sumei, Sikdar, Biplab.  2021.  A Privacy-Preserving Pedestrian Dead Reckoning Framework Based on Differential Privacy. 2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). :1487–1492.

Pedestrian dead reckoning (PDR) is a widely used approach to estimate locations and trajectories. Accessing location-based services with trajectory data can bring convenience to people, but may also raise privacy concerns that need to be addressed. In this paper, a privacy-preserving pedestrian dead reckoning framework is proposed to protect a user’s trajectory privacy based on differential privacy. We introduce two metrics to quantify trajectory privacy and data utility. Our proposed privacy-preserving trajectory extraction algorithm consists of three mechanisms for the initial locations, stride lengths and directions. In addition, we design an adversary model based on particle filtering to evaluate the performance and demonstrate the effectiveness of our proposed framework with our collected sensor reading dataset.

2021-05-25
Diao, Yiqing, Ye, Ayong, Cheng, Baorong, Zhang, Jiaomei, Zhang, Qiang.  2020.  A Dummy-Based Privacy Protection Scheme for Location-Based Services under Spatiotemporal Correlation. 2020 International Conference on Networking and Network Applications (NaNA). :443—447.
The dummy-based method has been commonly used to protect the users location privacy in location-based services, since it can provide precise results and generally do not rely on a third party or key sharing. However, the close spatiotemporal correlation between the consecutively reported locations enables the adversary to identify some dummies, which lead to the existing dummy-based schemes fail to protect the users location privacy completely. To address this limit, this paper proposes a new algorithm to produce dummy location by generating dummy trajectory, which naturally takes into account of the spatiotemporal correlation all round. Firstly, the historical trajectories similar to the user's travel route are chosen as the dummy trajectories which depend on the distance between two trajectories with the help of home gateway. Then, the dummy is generated from the dummy trajectory by taking into account of time reachability, historical query similarity and the computation of in-degree/out-degree. Security analysis shows that the proposed scheme successfully perturbs the spatiotemporal correlation between neighboring location sets, therefore, it is infeasible for the adversary to distinguish the users real location from the dummies. Furthermore, extensive experiments indicate that the proposal is able to protect the users location privacy effectively and efficiently.
2020-11-02
Ma, Y., Bai, X..  2019.  Comparison of Location Privacy Protection Schemes in VANETs. 2019 12th International Symposium on Computational Intelligence and Design (ISCID). 2:79–83.
Vehicular Ad-hoc Networks (VANETs) is a traditional mobile ad hoc network (MANET) used on traffic roads and it is a special mobile ad hoc network. As an intelligent transportation system, VANETs can solve driving safety and provide value-added services. Therefore, the application of VANETs can improve the safety and efficiency of road traffic. Location services are in a crucial position for the development of VANETs. VANETs has the characteristics of open access and wireless communication. Malicious node attacks may lead to the leakage of user privacy in VANETs, thus seriously affecting the use of VANETs. Therefore, the location privacy issue of VANETs cannot be ignored. This paper classifies the attack methods in VANETs, and summarizes and compares the location privacy protection techniques proposed in the existing research.
2020-09-28
Gao, Meng-Qi, Han, Jian-Min, Lu, Jian-Feng, Peng, Hao, Hu, Zhao-Long.  2018.  Incentive Mechanism for User Collaboration on Trajectory Privacy Preservation. 2018 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computing, Scalable Computing Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). :1976–1981.
Collaborative trajectory privacy preservation (CTPP) scheme is an effective method for continuous queries. However, collaborating with other users need pay some cost. Therefore, some rational and selfish users will not choose collaboration, which will result in users' privacy disclosing. To solve the problem, this paper proposes a collaboration incentive mechanism by rewarding collaborative users and punishing non-collaborative users. The paper models the interactions of users participating in CTPP as a repeated game and analysis the utility of participated users. The analytical results show that CTPP with the proposed incentive mechanism can maximize user's payoffs. Experiments show that the proposed mechanism can effectively encourage users' collaboration behavior and effectively preserve the trajectory privacy for continuous query users.