Visible to the public Biblio

Filters: Keyword is fuzzy extractor  [Clear All Filters]
2021-01-18
Sebbah, A., Kadri, B..  2020.  A Privacy and Authentication Scheme for IoT Environments Using ECC and Fuzzy Extractor. 2020 International Conference on Intelligent Systems and Computer Vision (ISCV). :1–5.
The internet of things (IoT) is consisting of many complementary elements which have their own specificities and capacities. These elements are gaining new application and use cases in our lives. Nevertheless, they open a negative horizon of security and privacy issues which must be treated delicately before the deployment of any IoT. Recently, different works emerged dealing with the same branch of issues, like the work of Yuwen Chen et al. that is called LightPriAuth. LightPriAuth has several drawbacks and weakness against various popular attacks such as Insider attack and stolen smart card. Our objective in this paper is to propose a novel solution which is “authentication scheme with three factor using ECC and fuzzy extractor” to ensure security and privacy. The obtained results had proven the superiority of our scheme's performances compared to that of LightPriAuth which, additionally, had defeated the weaknesses left by LightPriAuth.
Bentahar, A., Meraoumia, A., Bendjenna, H., Chitroub, S., Zeroual, A..  2020.  Fuzzy Extractor-Based Key Agreement for Internet of Things. 020 1st International Conference on Communications, Control Systems and Signal Processing (CCSSP). :25–29.
The emergence of the Internet of Things with its constraints obliges researchers in this field to find light and accurate solutions to secure the data exchange. This document presents secure authentication using biometrics coupled with an effective key agreement scheme to save time and energy. In our scheme, the agreed key is used to encrypt transmission data between different IoT actors. While the fuzzy extractor based on the fuzzy vault principle, is used as authentication and as key agreement scheme. Besides, our system incorporates the Reed Solomon and Hamming codes to give some tolerance to errors. The experimental results have been discussed according to several recognition rates and computation times. Indeed, the recognition rate results have been compared to other works to validate our system. Also, we clarify how our system resists to specific transmission attacks without affecting lightness and accuracy.
2020-09-28
Zhang, Shuaipeng, Liu, Hong.  2019.  Environment Aware Privacy-Preserving Authentication with Predictability for Medical Edge Computing. 2019 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC). :90–96.
With the development of IoT, smart health has significantly improved the quality of people's life. A large amount of smart health monitoring system has been proposed, which provides an opportunity for timely and efficient diagnosis. Nevertheless, most of them ignored the impact of environment on patients' health. Due to the openness of the communication channel, data security and privacy preservation are crucial problems to be solved. In this work, an environment aware privacy-preserving authentication protocol based on the fuzzy extractor and elliptic curve cryptography (ecc) is designed for health monitoring system with mutual authentication and anonymity. Edge computing unit can authenticate all environmental sensors at one time. Fuzzy synthetic evaluation model is utilized to evaluate the environment equality with the patients' temporal health index (THI) as an assessment factor, which can help to predict the appropriate environment. The session key is established for secure communication based on the predicted result. Through security analysis, the proposed protocol can prevent common attacks. Moreover, performance analysis shows that the proposed protocol is applicable for resource-limited smart devices in edge computing health monitoring system.