Visible to the public Biblio

Filters: Keyword is voltage restoration  [Clear All Filters]
2023-07-19
Moradi, Majid, Heydari, Mojtaba, Zarei, Seyed Fariborz.  2022.  Distributed Secondary Control for Voltage Restoration of ESSs in a DC Microgrid. 2022 13th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC). :431—436.
Due to the intermittent nature of renewable energy sources, the implementation of energy storage systems (ESSs) is crucial for the reliable operation of microgrids. This paper proposes a peer-to-peer distributed secondary control scheme for accurate voltage restoration of distributed ESS units in a DC microgrid. The presented control framework only requires local and neighboring information to function. Besides, the ESSs communicate with each other through a sparse network in a discrete fashion compared to existing approaches based on continuous data exchange. This feature ensures reliability, expandability, and flexibility of the proposed strategy for a more practical realization of distributed control paradigm. A simulation case study is presented using MATLAB/Simulink to illustrate the performance and effectiveness of the proposed control strategy.
2020-10-06
Bidram, Ali, Damodaran, Lakshmisree, Fierro, Rafael.  2019.  Cybersecure Distributed Voltage Control of AC Microgrids. 2019 IEEE/IAS 55th Industrial and Commercial Power Systems Technical Conference (I CPS). :1—6.

In this paper, the cybersecurity of distributed secondary voltage control of AC microgrids is addressed. A resilient approach is proposed to mitigate the negative impacts of cyberthreats on the voltage and reactive power control of Distributed Energy Resources (DERs). The proposed secondary voltage control is inspired by the resilient flocking of a mobile robot team. This approach utilizes a virtual time-varying communication graph in which the quality of the communication links is virtualized and determined based on the synchronization behavior of DERs. The utilized control protocols on DERs ensure that the connectivity of the virtual communication graph is above a specific resilience threshold. Once the resilience threshold is satisfied the Weighted Mean Subsequence Reduced (WMSR) algorithm is applied to satisfy voltage restoration in the presence of malicious adversaries. A typical microgrid test system including 6 DERs is simulated to verify the validity of proposed resilient control approach.