Visible to the public Biblio

Filters: Keyword is watermarking approach  [Clear All Filters]
2020-11-02
Sengupta, Anirban, Chandra, N. Prajwal, Kumar, E. Ranjith.  2019.  Robust Digital Signature to Protect IP Core against Fraudulent Ownership and Cloning. 2019 IEEE 9th International Conference on Consumer Electronics (ICCE-Berlin). :1—3.

Digital signal processing (DSP) and multimedia based reusable Intellectual property (IP) cores form key components of system-on-chips used in consumer electronic devices. They represent years of valuable investment and hence need protection against prevalent threats such as IP cloning and fraudulent claim of ownership. This paper presents a novel crypto digital signature approach which incorporates multiple security modules such as encryption, hashing and encoding for protection of digital signature processing cores. The proposed approach achieves higher robustness (and reliability), in terms of lower probability of coincidence, at lower design cost than existing watermarking approaches for IP cores. The proposed approach achieves stronger proof of authorship (on average by 39.7%) as well as requires lesser storage hardware compared to a recent similar work.

2020-10-06
Marquis, Victoria, Ho, Rebecca, Rainey, William, Kimpel, Matthew, Ghiorzi, Joseph, Cricchi, William, Bezzo, Nicola.  2018.  Toward attack-resilient state estimation and control of autonomous cyber-physical systems. 2018 Systems and Information Engineering Design Symposium (SIEDS). :70—75.

This project develops techniques to protect against sensor attacks on cyber-physical systems. Specifically, a resilient version of the Kalman filtering technique accompanied with a watermarking approach is proposed to detect cyber-attacks and estimate the correct state of the system. The defense techniques are used in conjunction and validated on two case studies: i) an unmanned ground vehicle (UGV) in which an attacker alters the reference angle and ii) a Cube Satellite (CubeSat) in which an attacker modifies the orientation of the satellite degrading its performance. Based on this work, we show that the proposed techniques in conjunction achieve better resiliency and defense capability than either technique alone against spoofing and replay attacks.