Visible to the public Biblio

Filters: Keyword is search and rescue operations  [Clear All Filters]
2020-12-15
Laso, P. Merino, Brosset, D., Giraud, M..  2018.  Secured Architecture for Unmanned Surface Vehicle Fleets Management and Control. 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech). :373—375.

Cyber-physical systems contribute to building new infrastructure in the modern world. These systems help realize missions reducing costs and risks. The seas being a harsh and dangerous environment are a perfect application of them. Unmanned Surface vehicles (USV) allow realizing normal and new tasks reducing risk and cost i.e. surveillance, water cleaning, environmental monitoring or search and rescue operations. Also, as they are unmanned vehicles they can extend missions to unpleasing and risky weather conditions. The novelty of these systems makes that new command and control platforms need to be developed. In this paper, we describe an implemented architecture with 5 separated levels. This structure increases security by defining roles and by limiting information exchanges.

2020-10-12
D'Angelo, Mirko, Gerasimou, Simos, Ghahremani, Sona, Grohmann, Johannes, Nunes, Ingrid, Pournaras, Evangelos, Tomforde, Sven.  2019.  On Learning in Collective Self-Adaptive Systems: State of Practice and a 3D Framework. 2019 IEEE/ACM 14th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS). :13–24.
Collective self-adaptive systems (CSAS) are distributed and interconnected systems composed of multiple agents that can perform complex tasks such as environmental data collection, search and rescue operations, and discovery of natural resources. By providing individual agents with learning capabilities, CSAS can cope with challenges related to distributed sensing and decision-making and operate in uncertain environments. This unique characteristic of CSAS enables the collective to exhibit robust behaviour while achieving system-wide and agent-specific goals. Although learning has been explored in many CSAS applications, selecting suitable learning models and techniques remains a significant challenge that is heavily influenced by expert knowledge. We address this gap by performing a multifaceted analysis of existing CSAS with learning capabilities reported in the literature. Based on this analysis, we introduce a 3D framework that illustrates the learning aspects of CSAS considering the dimensions of autonomy, knowledge access, and behaviour, and facilitates the selection of learning techniques and models. Finally, using example applications from this analysis, we derive open challenges and highlight the need for research on collaborative, resilient and privacy-aware mechanisms for CSAS.