Biblio
Filters: Keyword is trajectory planning [Clear All Filters]
Multi-Robot Security System based on Robot Operating System and Hybridized Blockchain Model. 2022 IEEE 3rd Global Conference for Advancement in Technology (GCAT). :1–6.
.
2022. Multi robot systems are defined as a collection of two or more robots that are capable of working autonomously while coordinating with each other. Three challenges emerge while designing any multi robot system. The robots have to coordinate their path planning or trajectory planning in order to avoid collision during the course of navigation, while collaborating tasks with other robots to achieve a specific end goal for the system. The other challenge, which is the focus of this paper, is the security of the entire multi robot system. Since robots have to coordinate with each other, any one of them being malicious due to any kind of security threat, can lead to a chain reaction that may compromise the entire system. Such security threats can be fatal if not dealt with immediately. This paper proposes the use of a Hybridized Blockchain Model (HBM) to identify such security threats and take necessary actions in real time so that the system does not encounter any catastrophic failure. The proposed security architecture uses ROS (Robot operating system) to decentralize the information collected by robot clients and HBM to monitor the clients and take necessary real time actions.
Flatness-based control of a 3-phases PWM rectifier with LCL-filter amp; disturbance observer. IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society. :4685–4690.
.
2020. In more electrical aircraft, the embedded electrical network is handling more and more vital functions, being more and more strained as well. Attenuation of switching harmonics is a key step in the network reliability, thus filtering elements play a central role. To keep the weight of the embedded network reasonable, weakly damped high-order filters shall be preferred. Flatness-based control (FBC) can offer both high bandwidth regulation and large signal stability proof. This make FBC a good candidate to handle the inherent oscillating behavior of aforementioned filters. However, this control strategy can be tricky to implement, especially with high order systems. Moreover, FBC is more sensor demanding than classic PI-based control. This paper address these two drawbacks. First, a novel trajectory planning for high order systems is proposed. This method does not require multiple derivations. Then the input sensors are removed thanks to a parameters estimator. Feasibility and performances are verified with experimental results. Performances comparison with cascaded-loop topologies are given in final section to prove the relevance of the proposed control strategy.
ISSN: 2577-1647