Biblio
Filters: Author is PIERFEDERICI, Serge [Clear All Filters]
Validation of the standstill magnetization strategy of a FeCrCo-based Variable Flux Memory Machine. 2021 24th International Conference on Electrical Machines and Systems (ICEMS). :536–541.
.
2021. The use of AlNiCo alloys as the low coercive force (LCF) magnet in Variable Flux Memory Machines has been largely discussed in the literature, but similar magnetic materials as FeCrCo are still little explored. This paper proposes the study of a standstill magnetization strategy of a Variable Flux Memory Machine composed by a FeCrCo-based cylindrical rotor. An inverter in DC/DC mode is proposed for injecting short-time currents along the magnetization axis aiming the regulation of the magnetization state of the FeCrCo. A methodology for validating results obtained is defined from the estimation of the remanence and the excitation field characterizing the behavior of the internal recoil lines of the magnet used in the rotor. A study of the armature reaction affecting the machine when q-axis currents supply the machine is proposed by simulation.
Flatness-based control of a 3-phases PWM rectifier with LCL-filter amp; disturbance observer. IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society. :4685–4690.
.
2020. In more electrical aircraft, the embedded electrical network is handling more and more vital functions, being more and more strained as well. Attenuation of switching harmonics is a key step in the network reliability, thus filtering elements play a central role. To keep the weight of the embedded network reasonable, weakly damped high-order filters shall be preferred. Flatness-based control (FBC) can offer both high bandwidth regulation and large signal stability proof. This make FBC a good candidate to handle the inherent oscillating behavior of aforementioned filters. However, this control strategy can be tricky to implement, especially with high order systems. Moreover, FBC is more sensor demanding than classic PI-based control. This paper address these two drawbacks. First, a novel trajectory planning for high order systems is proposed. This method does not require multiple derivations. Then the input sensors are removed thanks to a parameters estimator. Feasibility and performances are verified with experimental results. Performances comparison with cascaded-loop topologies are given in final section to prove the relevance of the proposed control strategy.
ISSN: 2577-1647