Biblio
In the process of big data analysis and processing, a key concern blocking users from storing and processing their data in the cloud is their misgivings about the security and performance of cloud services. There is an urgent need to develop an approach that can help each cloud service provider (CSP) to demonstrate that their infrastructure and service behavior can meet the users' expectations. However, most of the prior research work focused on validating the process compliance of cloud service without an accurate description of the basic service behaviors, and could not measure the security capability. In this paper, we propose a novel approach to verify cloud service security conformance called CloudSec, which reduces the description gap between the cloud provider and customer through modeling cloud service behaviors (CloudBeh Model) and security SLA (SecSLA Model). These models enable a systematic integration of security constraints and service behavior into cloud while using UPPAAL to check the conformance, which can not only check CloudBeh performance metrics conformance, but also verify whether the security constraints meet the SecSLA. The proposed approach is validated through case study and experiments with a cloud storage service based on OpenStack, which illustrates CloudSec approach effectiveness and can be applied in real cloud scenarios.
Power network is important part of national comprehensive energy resources transmission system in the way of energy security promise and the economy society running. Meanwhile, because of many industries involved, the development of grid can push national innovation ability. Nowadays, it makes the inner of smart grid flourish that material science, computer technique and information and communication technology go forward. This paper researches the function and modality of smart grid on energy, geography and technology dimensions. The analysis on the technology dimension is addressed on two aspects which are network control and interaction with customer. The mapping relationship between functions fo smart grid and eight key technologies, which are Large-capacity flexible transmission technology, DC power distribution technology, Distributed power generation technology, Large-scale energy storage technology, Real-time tracking simulation technology, Intelligent electricity application technology, The big data analysis and cloud computing technology, Wide-area situational awareness technology, is given. The research emphasis of the key technologies is proposed.
Data is one of the most valuable assets for organization. It can facilitate users or organizations to meet their diverse goals, ranging from scientific advances to business intelligence. Due to the tremendous growth of data, the notion of big data has certainly gained momentum in recent years. Cloud computing is a key technology for storing, managing and analyzing big data. However, such large, complex, and growing data, typically collected from various data sources, such as sensors and social media, can often contain personally identifiable information (PII) and thus the organizations collecting the big data may want to protect their outsourced data from the cloud. In this paper, we survey our research towards development of efficient and effective privacy-enhancing (PE) techniques for management and analysis of big data in cloud computing.We propose our initial approaches to address two important PE applications: (i) privacy-preserving data management and (ii) privacy-preserving data analysis under the cloud environment. Additionally, we point out research issues that still need to be addressed to develop comprehensive solutions to the problem of effective and efficient privacy-preserving use of data.