Biblio
The veil of anonymity provided by smartphones with pre-paid SIM cards, public Wi-Fi hotspots, and distributed networks like Tor has drastically complicated the task of identifying users of social media during forensic investigations. In some cases, the text of a single posted message will be the only clue to an author's identity. How can we accurately predict who that author might be when the message may never exceed 140 characters on a service like Twitter? For the past 50 years, linguists, computer scientists, and scholars of the humanities have been jointly developing automated methods to identify authors based on the style of their writing. All authors possess peculiarities of habit that influence the form and content of their written works. These characteristics can often be quantified and measured using machine learning algorithms. In this paper, we provide a comprehensive review of the methods of authorship attribution that can be applied to the problem of social media forensics. Furthermore, we examine emerging supervised learning-based methods that are effective for small sample sizes, and provide step-by-step explanations for several scalable approaches as instructional case studies for newcomers to the field. We argue that there is a significant need in forensics for new authorship attribution algorithms that can exploit context, can process multi-modal data, and are tolerant to incomplete knowledge of the space of all possible authors at training time.
Social media plays an integral part in individual's everyday lives as well as for companies. Social media brings numerous benefits in people's lives such as to keep in touch with close ones and specially with relatives who are overseas, to make new friends, buy products, share information and much more. Unfortunately, several threats also accompany the countless advantages of social media. The rapid growth of the online social networking sites provides more scope for criminals and cyber-criminals to carry out their illegal activities. Hackers have found different ways of exploiting these platform for their malicious gains. This research englobes some of the common threats on social media such as spam, malware, Trojan horse, cross-site scripting, industry espionage, cyber-bullying, cyber-stalking, social engineering attacks. The main purpose of the study to elaborates on phishing, malware and click-jacking attacks. The main purpose of the research, there is no particular research available on the forensic investigation for Facebook. There is no particular forensic investigation methodology and forensic tools available which can follow on the Facebook. There are several tools available to extract digital data but it's not properly tested for Facebook. Forensics investigation tool is used to extract evidence to determine what, when, where, who is responsible. This information is required to ensure that the sufficient evidence to take legal action against criminals.
Self-disclosure is rewarding and provides significant benefits for individuals, but it also involves risks, especially in social media settings. We conducted an online experiment to study the relationship between content intimacy and willingness to self-disclose in social media, and how identification (real name vs. anonymous) and audience type (social ties vs. people nearby) moderate that relationship. Content intimacy is known to regulate self-disclosure in face-to-face communication: people self-disclose less as content intimacy increases. We show that such regulation persists in online social media settings. Further, although anonymity and an audience of social ties are both known to increase self-disclosure, it is unclear whether they (1) increase self-disclosure baseline for content of all intimacy levels, or (2) weaken intimacy's regulation effect, making people more willing to disclose intimate content. We show that intimacy always regulates self-disclosure, regardless of settings. We also show that anonymity mainly increases self-disclosure baseline and (sometimes) weakens the regulation. On the other hand, an audience of social ties increases the baseline but strengthens the regulation. Finally, we demonstrate that anonymity has a more salient effect on content of negative valence.The results are critical to understanding the dynamics and opportunities of self-disclosure in social media services that vary levels of identification and types of audience.
Phishing is one of the most dangerous information security threats present in the world today, with losses toping 5.9 billion dollars in 2013. Evolving from the original concept of phishing, spear phishing also attempts to scam individuals online, however it uses personalized mail to yield a far higher success rate. This paper suggests an increased threat of spear phishing success due to the presence of social media. Assessing this new threat is important not only to the individuals, but also to companies whose employees may specifically be targeted through their social media accounts. The paper presents the design and implementation of an architecture to determine phishing susceptibility of a user through their social media accounts, and methods to reduce the threat. Preliminary testing shows that social media provides a publicly accessible resource to assess targeted individuals for phishing attacks through their accounts.
A major issue that arises from mass visual media distribution in modern video sharing, social media and cloud services, is the issue of privacy. Malicious users can use these services to track the actions of certain individuals and/or groups thus violating their privacy. As a result the need to hinder automatic facial image identification in images and videos arises. In this paper we propose a method for de-identifying facial images. Contrary to most de-identification methods, this method manipulates facial images so that humans can still recognize the individual or individuals in an image or video frame, but at the same time common automatic identification algorithms fail to do so. This is achieved by projecting the facial images on a hypersphere. From the conducted experiments it can be verified that this method is effective in reducing the classification accuracy under 10%. Furthermore, in the resulting images the subject can be identified by human viewers.
This paper reports the results and findings of a historical analysis of open source intelligence (OSINT) information (namely Twitter data) surrounding the events of the September 11, 2012 attack on the US Diplomatic mission in Benghazi, Libya. In addition to this historical analysis, two prototype capabilities were combined for a table top exercise to explore the effectiveness of using OSINT combined with a context aware handheld situational awareness framework and application to better inform potential responders as the events unfolded. Our experience shows that the ability to model sentiment, trends, and monitor keywords in streaming social media, coupled with the ability to share that information to edge operators can increase their ability to effectively respond to contingency operations as they unfold.
Data is one of the most valuable assets for organization. It can facilitate users or organizations to meet their diverse goals, ranging from scientific advances to business intelligence. Due to the tremendous growth of data, the notion of big data has certainly gained momentum in recent years. Cloud computing is a key technology for storing, managing and analyzing big data. However, such large, complex, and growing data, typically collected from various data sources, such as sensors and social media, can often contain personally identifiable information (PII) and thus the organizations collecting the big data may want to protect their outsourced data from the cloud. In this paper, we survey our research towards development of efficient and effective privacy-enhancing (PE) techniques for management and analysis of big data in cloud computing.We propose our initial approaches to address two important PE applications: (i) privacy-preserving data management and (ii) privacy-preserving data analysis under the cloud environment. Additionally, we point out research issues that still need to be addressed to develop comprehensive solutions to the problem of effective and efficient privacy-preserving use of data.