Biblio
Recently, social networks have become more popular owing to the capability of connecting people globally and sharing videos, images and various types of data. A major security issue in social media is the existence of fake accounts. It is a phenomenon that has fake accounts that can be frequently utilized by mischievous users and entities, which falsify, distribute, and duplicate fake news and publicity. As the fake news resulted in serious consequences, numerous research works have focused on the design of automated fake accounts and fake news detection models. In this aspect, this study designs a hyperparameter tuned deep learning based automated fake news detection (HDL-FND) technique. The presented HDL-FND technique accomplishes the effective detection and classification of fake news. Besides, the HDLFND process encompasses a three stage process namely preprocessing, feature extraction, and Bi-Directional Long Short Term Memory (BiLSTM) based classification. The correct way of demonstrating the promising performance of the HDL-FND technique, a sequence of replications were performed on the available Kaggle dataset. The investigational outcomes produce improved performance of the HDL-FND technique in excess of the recent approaches in terms of diverse measures.
Social media has been one of the most efficacious and precise by speakers of public opinion. A strategy which sanctions the utilization and illustration of twitter data to conclude public conviction is discussed in this paper. Sentiments on exclusive entities with diverse strengths and intenseness are stated by public, where these sentiments are strenuously cognate to their personal mood and emotions. To examine the sentiments from natural language texts, addressing various opinions, a lot of methods and lexical resources have been propounded. A path for boosting twitter sentiment classification using various sentiment proportions as meta-level features has been proposed by this article. Analysis of tweets was done on the product iPhone 6.
One of the challenges in supplying the communities with wider access to scientific databases is the need for knowledge of database languages like Structured Query Language (SQL). Although the SQL language has been published in many forms, not everybody is able to write SQL queries. Another challenge is that it might not be practical to make the public aware of the structure of databases. There is a need for novice users to query relational databases using their natural language. To solve this problem, many natural language interfaces to structured databases have been developed. The goal is to provide a more intuitive method for generating database queries and delivering responses. Through social media, which makes it possible to interact with a wide section of the population, and with the help of natural language processing, researchers at the Atmospheric Radiation Measurement (ARM) Data Center at Oak Ridge National Laboratory (ORNL) have developed a concept to enable easy search and retrieval of data from several environmental data centers for the scientific community through social media.Using a machine learning framework that maps natural language text to thousands of datasets, instruments, variables, and data streams, the prototype system would allow users to request data through Twitter and receive a link (via tweet) to applicable data results on the project's search catalog tailored to their key words. This automated identification of relevant data from various petascale archives at ORNL could increase convenience, access, and use of the project's data by the broader community. In this paper we discuss how some data-intensive projects at ORNL are using innovative ways to help in data discovery.
In recent years, the spreading of malicious social media messages about financial stocks has threatened the security of financial market. Market Anomaly Attacks is an illegal practice in the stock or commodities markets that induces investors to make purchase or sale decisions based on false information. Identifying these threats from noisy social media datasets remains challenging because of the long time sequence in these social media postings, ambiguous textual context and the difficulties for traditional deep learning approaches to handle both temporal and text dependent data such as financial social media messages. This research developed a temporal recurrent neural network (TRNN) approach to capturing both time and text sequence dependencies for intelligent detection of market anomalies. We tested the approach by using financial social media of U.S. technology companies and their stock returns. Compared with traditional neural network approaches, TRNN was found to more efficiently and effectively classify abnormal returns.
Community structure detection in social networks has become a big challenge. Various methods in the literature have been presented to solve this challenge. Recently, several methods have also been proposed to solve this challenge based on a mapping-reduction model, in which data and algorithms are divided between different process nodes so that the complexity of time and memory of community detection in large social networks is reduced. In this paper, a mapping-reduction model is first proposed to detect the structure of communities. Then the proposed framework is rewritten according to a new mechanism called distributed cache memory; distributed cache memory can store different values associated with different keys and, if necessary, put them at different computational nodes. Finally, the proposed rewritten framework has been implemented using SPARK tools and its implementation results have been reported on several major social networks. The performed experiments show the effectiveness of the proposed framework by varying the values of various parameters.
In the light of the information revolution, and the propagation of big social data, the dissemination of misleading information is certainly difficult to control. This is due to the rapid and intensive flow of information through unconfirmed sources under the propaganda and tendentious rumors. This causes confusion, loss of trust between individuals and groups and even between governments and their citizens. This necessitates a consolidation of efforts to stop penetrating of false information through developing theoretical and practical methodologies aim to measure the credibility of users of these virtual platforms. This paper presents an approach to domain-based prediction to user's trustworthiness of Online Social Networks (OSNs). Through incorporating three machine learning algorithms, the experimental results verify the applicability of the proposed approach to classify and predict domain-based trustworthy users of OSNs.
At a time when all it takes to open a Twitter account is a mobile phone, the act of authenticating information encountered on social media becomes very complex, especially when we lack measures to verify digital identities in the first place. Because the platform supports anonymity, fake news generated by dubious sources have been observed to travel much faster and farther than real news. Hence, we need valid measures to identify authors of misinformation to avert these consequences. Researchers propose different authorship attribution techniques to approach this kind of problem. However, because tweets are made up of only 280 characters, finding a suitable authorship attribution technique is a challenge. This research aims to classify authors of tweets by comparing machine learning methods like logistic regression and naive Bayes. The processes of this application are fetching of tweets, pre-processing, feature extraction, and developing a machine learning model for classification. This paper illustrates the text classification for authorship process using machine learning techniques. In total, there were 46,895 tweets used as both training and testing data, and unique features specific to Twitter were extracted. Several steps were done in the pre-processing phase, including removal of short texts, removal of stop-words and punctuations, tokenizing and stemming of texts as well. This approach transforms the pre-processed data into a set of feature vector in Python. Logistic regression and naive Bayes algorithms were applied to the set of feature vectors for the training and testing of the classifier. The logistic regression based classifier gave the highest accuracy of 91.1% compared to the naive Bayes classifier with 89.8%.
``Style transfer'' among images has recently emerged as a very active research topic, fuelled by the power of convolution neural networks (CNNs), and has become fast a very popular technology in social media. This paper investigates the analogous problem in the audio domain: How to transfer the style of a reference audio signal to a target audio content? We propose a flexible framework for the task, which uses a sound texture model to extract statistics characterizing the reference audio style, followed by an optimization-based audio texture synthesis to modify the target content. In contrast to mainstream optimization-based visual transfer method, the proposed process is initialized by the target content instead of random noise and the optimized loss is only about texture, not structure. These differences proved key for audio style transfer in our experiments. In order to extract features of interest, we investigate different architectures, whether pre-trained on other tasks, as done in image style transfer, or engineered based on the human auditory system. Experimental results on different types of audio signal confirm the potential of the proposed approach.
Given social media users' plethora of interactions, appropriately controlling access to such information becomes a challenging task for users. Selecting the appropriate audience, even from within their own friend network, can be fraught with difficulties. PACMAN is a potential solution for this dilemma problem. It's a personal assistant agent that recommends personalized access control decisions based on the social context of any information disclosure by incorporating communities generated from the user's network structure and utilizing information in the user's profile. PACMAN provides accurate recommendations while minimizing intrusiveness.
Deep web, a hidden and encrypted network that crawls beneath the surface web today has become a social hub for various criminals who carry out their crime through the cyber space and all the crime is being conducted and hosted on the Deep Web. This research paper is an effort to bring forth various techniques and ways in which an internet user can be safe online and protect his privacy through anonymity. Understanding how user's data and private information is phished and what are the risks of sharing personal information on social media.
Information shared on Twitter is ever increasing and users-recipients are overwhelmed by the number of tweets they receive, many of which of no interest. Filters that estimate the interest of each incoming post can alleviate this problem, for example by allowing users to sort incoming posts by predicted interest (e.g., "top stories" vs. "most recent" in Facebook). Global and personal filters have been used to detect interesting posts in social networks. Global filters are trained on large collections of posts and reactions to posts (e.g., retweets), aiming to predict how interesting a post is for a broad audience. In contrast, personal filters are trained on posts received by a particular user and the reactions of the particular user. Personal filters can provide recommendations tailored to a particular user's interests, which may not coincide with the interests of the majority of users that global filters are trained to predict. On the other hand, global filters are typically trained on much larger datasets compared to personal filters. Hence, global filters may work better in practice, especially with new users, for which personal filters may have very few training instances ("cold start" problem). Following Uysal and Croft, we devised a hybrid approach that combines the strengths of both global and personal filters. As in global filters, we train a single system on a large, multi-user collection of tweets. Each tweet, however, is represented as a feature vector with a number of user-specific features.