Visible to the public Biblio

Filters: Keyword is social media  [Clear All Filters]
2023-07-21
Concepcion, A. R., Sy, C..  2022.  A System Dynamics Model of False News on Social Networking Sites. 2022 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM). :0786—0790.
Over the years, false news has polluted the online media landscape across the world. In this “post-truth” era, the narratives created by false news have now come into fruition through dismantled democracies, disbelief in science, and hyper-polarized societies. Despite increased efforts in fact-checking & labeling, strengthening detection systems, de-platforming powerful users, promoting media literacy and awareness of the issue, false news continues to be spread exponentially. This study models the behaviors of both the victims of false news and the platform in which it is spread— through the system dynamics methodology. The model was used to develop a policy design by evaluating existing and proposed solutions. The results recommended actively countering confirmation bias, restructuring social networking sites’ recommendation algorithms, and increasing public trust in news organizations.
2023-06-29
Kanagavalli, N., Priya, S. Baghavathi, D, Jeyakumar.  2022.  Design of Hyperparameter Tuned Deep Learning based Automated Fake News Detection in Social Networking Data. 2022 6th International Conference on Computing Methodologies and Communication (ICCMC). :958–963.

Recently, social networks have become more popular owing to the capability of connecting people globally and sharing videos, images and various types of data. A major security issue in social media is the existence of fake accounts. It is a phenomenon that has fake accounts that can be frequently utilized by mischievous users and entities, which falsify, distribute, and duplicate fake news and publicity. As the fake news resulted in serious consequences, numerous research works have focused on the design of automated fake accounts and fake news detection models. In this aspect, this study designs a hyperparameter tuned deep learning based automated fake news detection (HDL-FND) technique. The presented HDL-FND technique accomplishes the effective detection and classification of fake news. Besides, the HDLFND process encompasses a three stage process namely preprocessing, feature extraction, and Bi-Directional Long Short Term Memory (BiLSTM) based classification. The correct way of demonstrating the promising performance of the HDL-FND technique, a sequence of replications were performed on the available Kaggle dataset. The investigational outcomes produce improved performance of the HDL-FND technique in excess of the recent approaches in terms of diverse measures.

2023-02-17
Svadasu, Grandhi, Adimoolam, M..  2022.  Spam Detection in Social Media using Artificial Neural Network Algorithm and comparing Accuracy with Support Vector Machine Algorithm. 2022 International Conference on Business Analytics for Technology and Security (ICBATS). :1–5.
Aim: To bring off the spam detection in social media using Support Vector Machine (SVM) algorithm and compare accuracy with Artificial Neural Network (ANN) algorithm sample size of dataset is 5489, Initially the dataset contains several messages which includes spam and ham messages 80% messages are taken as training and 20% of messages are taken as testing. Materials and Methods: Classification was performed by KNN algorithm (N=10) for spam detection in social media and the accuracy was compared with SVM algorithm (N=10) with G power 80% and alpha value 0.05. Results: The value obtained in terms of accuracy was identified by ANN algorithm (98.2%) and for SVM algorithm (96.2%) with significant value 0.749. Conclusion: The accuracy of detecting spam using the ANN algorithm appears to be slightly better than the SVM algorithm.
2021-10-12
Ferraro, Angelo.  2020.  When AI Gossips. 2020 IEEE International Symposium on Technology and Society (ISTAS). :69–71.
The concept of AI Gossip is presented. It is analogous to the traditional understanding of a pernicious human failing. It is made more egregious by the technology of AI, internet, current privacy policies, and practices. The recognition by the technological community of its complacency is critical to realizing its damaging influence on human rights. A current example from the medical field is provided to facilitate the discussion and illustrate the seriousness of AI Gossip. Further study and model development is encouraged to support and facilitate the need to develop standards to address the implications and consequences to human rights and dignity.
2021-01-15
McCloskey, S., Albright, M..  2019.  Detecting GAN-Generated Imagery Using Saturation Cues. 2019 IEEE International Conference on Image Processing (ICIP). :4584—4588.
Image forensics is an increasingly relevant problem, as it can potentially address online disinformation campaigns and mitigate problematic aspects of social media. Of particular interest, given its recent successes, is the detection of imagery produced by Generative Adversarial Networks (GANs), e.g. `deepfakes'. Leveraging large training sets and extensive computing resources, recent GANs can be trained to generate synthetic imagery which is (in some ways) indistinguishable from real imagery. We analyze the structure of the generating network of a popular GAN implementation [1], and show that the network's treatment of exposure is markedly different from a real camera. We further show that this cue can be used to distinguish GAN-generated imagery from camera imagery, including effective discrimination between GAN imagery and real camera images used to train the GAN.
2021-01-11
Zhao, F., Skums, P., Zelikovsky, A., Sevigny, E. L., Swahn, M. H., Strasser, S. M., Huang, Y., Wu, Y..  2020.  Computational Approaches to Detect Illicit Drug Ads and Find Vendor Communities Within Social Media Platforms. IEEE/ACM Transactions on Computational Biology and Bioinformatics. :1–1.
The opioid abuse epidemic represents a major public health threat to global populations. The role social media may play in facilitating illicit drug trade is largely unknown due to limited research. However, it is known that social media use among adults in the US is widespread, there is vast capability for online promotion of illegal drugs with delayed or limited deterrence of such messaging, and further, general commercial sale applications provide safeguards for transactions; however, they do not discriminate between legal and illegal sale transactions. These characteristics of the social media environment present challenges to surveillance which is needed for advancing knowledge of online drug markets and the role they play in the drug abuse and overdose deaths. In this paper, we present a computational framework developed to automatically detect illicit drug ads and communities of vendors.The SVM- and CNNbased methods for detecting illicit drug ads, and a matrix factorization based method for discovering overlapping communities have been extensively validated on the large dataset collected from Google+, Flickr and Tumblr. Pilot test results demonstrate that our computational methods can effectively identify illicit drug ads and detect vendor-community with accuracy. These methods hold promise to advance scientific knowledge surrounding the role social media may play in perpetuating the drug abuse epidemic.
2020-10-12
Chung, Wingyan, Liu, Jinwei, Tang, Xinlin, Lai, Vincent S. K..  2018.  Extracting Textual Features of Financial Social Media to Detect Cognitive Hacking. 2018 IEEE International Conference on Intelligence and Security Informatics (ISI). :244–246.
Social media are increasingly reflecting and influencing the behavior of human and financial market. Cognitive hacking leverages the influence of social media to spread deceptive information with an intent to gain abnormal profits illegally or to cause losses. Measuring the information content in financial social media can be useful for identifying these attacks. In this paper, we developed an approach to identifying social media features that correlate with abnormal returns of the stocks of companies vulnerable to be targets of cognitive hacking. To test the approach, we collected price data and 865,289 social media messages on four technology companies from July 2017 to June 2018, and extracted features that contributed to abnormal stock movements. Preliminary results show that terms that are simple, motivate actions, incite emotion, and uses exaggeration are ranked high in the features of messages associated with abnormal price movements. We also provide selected messages to illustrate the use of these features in potential cognitive hacking attacks.
2020-09-11
Spradling, Matthew, Allison, Mark, Tsogbadrakh, Tsenguun, Strong, Jay.  2019.  Toward Limiting Social Botnet Effectiveness while Detection Is Performed: A Probabilistic Approach. 2019 International Conference on Computational Science and Computational Intelligence (CSCI). :1388—1391.
The prevalence of social botnets has increased public distrust of social media networks. Current methods exist for detecting bot activity on Twitter, Reddit, Facebook, and other social media platforms. Most of these detection methods rely upon observing user behavior for a period of time. Unfortunately, the behavior observation period allows time for a botnet to successfully propagate one or many posts before removal. In this paper, we model the post propagation patterns of normal users and social botnets. We prove that a botnet may exploit deterministic propagation actions to elevate a post even with a small botnet population. We propose a probabilistic model which can limit the impact of social media botnets until they can be detected and removed. While our approach maintains expected results for non-coordinated activity, coordinated botnets will be detected before propagation with high probability.
2020-09-04
Routh, Caleb, DeCrescenzo, Brandon, Roy, Swapnoneel.  2018.  Attacks and vulnerability analysis of e-mail as a password reset point. 2018 Fourth International Conference on Mobile and Secure Services (MobiSecServ). :1—5.
In this work, we perform security analysis of using an e-mail as a self-service password reset point, and exploit some of the vulnerabilities of e-mail servers' forgotten password reset paths. We perform and illustrate three different attacks on a personal Email account, using a variety of tools such as: public knowledge attainable through social media or public records to answer security questions and execute a social engineering attack, hardware available to the public to perform a man in the middle attack, and free software to perform a brute-force attack on the login of the email account. Our results expose some of the inherent vulnerabilities in using emails as password reset points. The findings are extremely relevant to the security of mobile devices since users' trend has leaned towards usage of mobile devices over desktops for Internet access.
2020-08-10
Hajdu, Gergo, Minoso, Yaclaudes, Lopez, Rafael, Acosta, Miguel, Elleithy, Abdelrahman.  2019.  Use of Artificial Neural Networks to Identify Fake Profiles. 2019 IEEE Long Island Systems, Applications and Technology Conference (LISAT). :1–4.
In this paper, we use machine learning, namely an artificial neural network to determine what are the chances that Facebook friend request is authentic or not. We also outline the classes and libraries involved. Furthermore, we discuss the sigmoid function and how the weights are determined and used. Finally, we consider the parameters of the social network page which are utmost important in the provided solution.
2020-05-22
Geetha, R, Rekha, Pasupuleti, Karthika, S.  2018.  Twitter Opinion Mining and Boosting Using Sentiment Analysis. 2018 International Conference on Computer, Communication, and Signal Processing (ICCCSP). :1—4.

Social media has been one of the most efficacious and precise by speakers of public opinion. A strategy which sanctions the utilization and illustration of twitter data to conclude public conviction is discussed in this paper. Sentiments on exclusive entities with diverse strengths and intenseness are stated by public, where these sentiments are strenuously cognate to their personal mood and emotions. To examine the sentiments from natural language texts, addressing various opinions, a lot of methods and lexical resources have been propounded. A path for boosting twitter sentiment classification using various sentiment proportions as meta-level features has been proposed by this article. Analysis of tweets was done on the product iPhone 6.

Devarakonda, Ranjeet, Giansiracusa, Michael, Kumar, Jitendra.  2018.  Machine Learning and Social Media to Mine and Disseminate Big Scientific Data. 2018 IEEE International Conference on Big Data (Big Data). :5312—5315.

One of the challenges in supplying the communities with wider access to scientific databases is the need for knowledge of database languages like Structured Query Language (SQL). Although the SQL language has been published in many forms, not everybody is able to write SQL queries. Another challenge is that it might not be practical to make the public aware of the structure of databases. There is a need for novice users to query relational databases using their natural language. To solve this problem, many natural language interfaces to structured databases have been developed. The goal is to provide a more intuitive method for generating database queries and delivering responses. Through social media, which makes it possible to interact with a wide section of the population, and with the help of natural language processing, researchers at the Atmospheric Radiation Measurement (ARM) Data Center at Oak Ridge National Laboratory (ORNL) have developed a concept to enable easy search and retrieval of data from several environmental data centers for the scientific community through social media.Using a machine learning framework that maps natural language text to thousands of datasets, instruments, variables, and data streams, the prototype system would allow users to request data through Twitter and receive a link (via tweet) to applicable data results on the project's search catalog tailored to their key words. This automated identification of relevant data from various petascale archives at ORNL could increase convenience, access, and use of the project's data by the broader community. In this paper we discuss how some data-intensive projects at ORNL are using innovative ways to help in data discovery.

2020-05-08
Huang, Yifan, Chung, Wingyan, Tang, Xinlin.  2018.  A Temporal Recurrent Neural Network Approach to Detecting Market Anomaly Attacks. 2018 IEEE International Conference on Intelligence and Security Informatics (ISI). :160—162.

In recent years, the spreading of malicious social media messages about financial stocks has threatened the security of financial market. Market Anomaly Attacks is an illegal practice in the stock or commodities markets that induces investors to make purchase or sale decisions based on false information. Identifying these threats from noisy social media datasets remains challenging because of the long time sequence in these social media postings, ambiguous textual context and the difficulties for traditional deep learning approaches to handle both temporal and text dependent data such as financial social media messages. This research developed a temporal recurrent neural network (TRNN) approach to capturing both time and text sequence dependencies for intelligent detection of market anomalies. We tested the approach by using financial social media of U.S. technology companies and their stock returns. Compared with traditional neural network approaches, TRNN was found to more efficiently and effectively classify abnormal returns.

2020-03-23
Nakayama, Johannes, Plettenberg, Nils, Halbach, Patrick, Burbach, Laura, Ziefle, Martina, Calero Valdez, André.  2019.  Trust in Cyber Security Recommendations. 2019 IEEE International Professional Communication Conference (ProComm). :48–55.
Over the last two decades, the Internet has established itself as part of everyday life. With the recent invention of Social Media, the advent of the Internet of Things as well as trends like "bring your own device" (BYOD), the needs for connectivity rise exponentially and so does the need for proper cyber security. However, human factors research of cyber security in private contexts comprises only a small fraction of the research in the field. In this study, we investigated adoption behaviours and trust in cyber security in private contexts by measuring - among other trust measures - disposition to trust and providing five cyber security scenarios. In each, a person/agent recommends the use of a cyber security tool. Trust is then measured regarding the recommending agent. We compare personal, expert, institutional, and magazine recommendations along with manufacturer information in an exploratory study of sixty participants. We found that personal, expert and institutional recommendations were trusted significantly more than manufacturer information and magazine reports. The highest trust scores were produced by the expert and the personal recommendation scenarios. We argue that technical and professional communicators should aim for cyber security knowledge permeation through personal relations, educating people with high technology self-efficacy beliefs who then disperse the acquired knowledge.
2020-02-18
Fattahi, Saeideh, Yazdani, Reza, Vahidipour, Seyyed Mehdi.  2019.  Discovery of Society Structure in A Social Network Using Distributed Cache Memory. 2019 5th International Conference on Web Research (ICWR). :264–269.

Community structure detection in social networks has become a big challenge. Various methods in the literature have been presented to solve this challenge. Recently, several methods have also been proposed to solve this challenge based on a mapping-reduction model, in which data and algorithms are divided between different process nodes so that the complexity of time and memory of community detection in large social networks is reduced. In this paper, a mapping-reduction model is first proposed to detect the structure of communities. Then the proposed framework is rewritten according to a new mechanism called distributed cache memory; distributed cache memory can store different values associated with different keys and, if necessary, put them at different computational nodes. Finally, the proposed rewritten framework has been implemented using SPARK tools and its implementation results have been reported on several major social networks. The performed experiments show the effectiveness of the proposed framework by varying the values of various parameters.

2020-02-17
Rodriguez, Ariel, Okamura, Koji.  2019.  Generating Real Time Cyber Situational Awareness Information Through Social Media Data Mining. 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC). 2:502–507.
With the rise of the internet many new data sources have emerged that can be used to help us gain insights into the cyber threat landscape and can allow us to better prepare for cyber attacks before they happen. With this in mind, we present an end to end real time cyber situational awareness system which aims to efficiently retrieve security relevant information from the social networking site Twitter.com. This system classifies and aggregates the data retrieved and provides real time cyber situational awareness information based on sentiment analysis and data analytics techniques. This research will assist security analysts to evaluate the level of cyber risk in their organization and proactively take actions to plan and prepare for potential attacks before they happen as well as contribute to the field through a cybersecurity tweet dataset.
2019-12-09
Gao, Yali, Li, Xiaoyong, Li, Jirui, Gao, Yunquan, Yu, Philip S..  2019.  Info-Trust: A Multi-Criteria and Adaptive Trustworthiness Calculation Mechanism for Information Sources. IEEE Access. 7:13999–14012.
Social media have become increasingly popular for the sharing and spreading of user-generated content due to their easy access, fast dissemination, and low cost. Meanwhile, social media also enable the wide propagation of cyber frauds, which leverage fake information sources to reach an ulterior goal. The prevalence of untrustworthy information sources on social media can have significant negative societal effects. In a trustworthy social media system, trust calculation technology has become a key demand for the identification of information sources. Trust, as one of the most complex concepts in network communities, has multi-criteria properties. However, the existing work only focuses on single trust factor, and does not consider the complexity of trust relationships in social computing completely. In this paper, a multi-criteria trustworthiness calculation mechanism called Info-Trust is proposed for information sources, in which identity-based trust, behavior-based trust, relation-based trust, and feedback-based trust factors are incorporated to present an accuracy-enhanced full view of trustworthiness evaluation of information sources. More importantly, the weights of these factors are dynamically assigned by the ordered weighted averaging and weighted moving average (OWA-WMA) combination algorithm. This mechanism surpasses the limitations of existing approaches in which the weights are assigned subjectively. The experimental results based on the real-world datasets from Sina Weibo demonstrate that the proposed mechanism achieves greater accuracy and adaptability in trustworthiness identification of the network information.
2019-08-05
Nabipourshiri, Rouzbeh, Abu-Salih, Bilal, Wongthongtham, Pornpit.  2018.  Tree-Based Classification to Users' Trustworthiness in OSNs. Proceedings of the 2018 10th International Conference on Computer and Automation Engineering. :190-194.

In the light of the information revolution, and the propagation of big social data, the dissemination of misleading information is certainly difficult to control. This is due to the rapid and intensive flow of information through unconfirmed sources under the propaganda and tendentious rumors. This causes confusion, loss of trust between individuals and groups and even between governments and their citizens. This necessitates a consolidation of efforts to stop penetrating of false information through developing theoretical and practical methodologies aim to measure the credibility of users of these virtual platforms. This paper presents an approach to domain-based prediction to user's trustworthiness of Online Social Networks (OSNs). Through incorporating three machine learning algorithms, the experimental results verify the applicability of the proposed approach to classify and predict domain-based trustworthy users of OSNs.

2019-03-04
Aborisade, O., Anwar, M..  2018.  Classification for Authorship of Tweets by Comparing Logistic Regression and Naive Bayes Classifiers. 2018 IEEE International Conference on Information Reuse and Integration (IRI). :269–276.

At a time when all it takes to open a Twitter account is a mobile phone, the act of authenticating information encountered on social media becomes very complex, especially when we lack measures to verify digital identities in the first place. Because the platform supports anonymity, fake news generated by dubious sources have been observed to travel much faster and farther than real news. Hence, we need valid measures to identify authors of misinformation to avert these consequences. Researchers propose different authorship attribution techniques to approach this kind of problem. However, because tweets are made up of only 280 characters, finding a suitable authorship attribution technique is a challenge. This research aims to classify authors of tweets by comparing machine learning methods like logistic regression and naive Bayes. The processes of this application are fetching of tweets, pre-processing, feature extraction, and developing a machine learning model for classification. This paper illustrates the text classification for authorship process using machine learning techniques. In total, there were 46,895 tweets used as both training and testing data, and unique features specific to Twitter were extracted. Several steps were done in the pre-processing phase, including removal of short texts, removal of stop-words and punctuations, tokenizing and stemming of texts as well. This approach transforms the pre-processed data into a set of feature vector in Python. Logistic regression and naive Bayes algorithms were applied to the set of feature vectors for the training and testing of the classifier. The logistic regression based classifier gave the highest accuracy of 91.1% compared to the naive Bayes classifier with 89.8%.

2019-02-25
Cornelissen, Laurenz A., Barnett, Richard J, Kepa, Morakane A. M., Loebenberg-Novitzkas, Daniel, Jordaan, Jacques.  2018.  Deploying South African Social Honeypots on Twitter. Proceedings of the Annual Conference of the South African Institute of Computer Scientists and Information Technologists. :179-187.
Inspired by the simple, yet effective, method of tweeting gibberish to attract automated social agents (bots), we attempt to create localised honeypots in the South African political context. We produce a series of defined techniques and combine them to generate interactions from users on Twitter. The paper offers two key contributions. Conceptually, an argument is made that honeypots should not be confused for bot detection methods, but are rather methods to capture low-quality users. Secondly, we successfully generate a list of 288 local low quality users active in the political context.
2019-02-14
Kotinas, Ilias, Fakotakis, Nikos.  2018.  Text Analysis for Decision Making Under Adversarial Environments. Proceedings of the 10th Hellenic Conference on Artificial Intelligence. :39:1-39:6.
Sentiment analysis and other practices for text analytics on social media rely on publicly available and editable collections of data for training and evaluation. These data collections are subject to poisoning and data contamination attacks by adversaries having an interest in misleading the results of the performed analysis. We present the problem of adversarial text mining with a focus on decision making and we suggest cross-discipline, cross-application and cross-model strategies for more robust analyses. Our approach is practitioner-centric and is based on broadly-used interpretable models with applications in decision making.
2018-11-19
Grinstein, E., Duong, N. Q. K., Ozerov, A., Pérez, P..  2018.  Audio Style Transfer. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :586–590.

``Style transfer'' among images has recently emerged as a very active research topic, fuelled by the power of convolution neural networks (CNNs), and has become fast a very popular technology in social media. This paper investigates the analogous problem in the audio domain: How to transfer the style of a reference audio signal to a target audio content? We propose a flexible framework for the task, which uses a sound texture model to extract statistics characterizing the reference audio style, followed by an optimization-based audio texture synthesis to modify the target content. In contrast to mainstream optimization-based visual transfer method, the proposed process is initialized by the target content instead of random noise and the optimized loss is only about texture, not structure. These differences proved key for audio style transfer in our experiments. In order to extract features of interest, we investigate different architectures, whether pre-trained on other tasks, as done in image style transfer, or engineered based on the human auditory system. Experimental results on different types of audio signal confirm the potential of the proposed approach.

2018-05-30
Misra, G., Such, J. M..  2017.  PACMAN: Personal Agent for Access Control in Social Media. IEEE Internet Computing. 21:18–26.

Given social media users' plethora of interactions, appropriately controlling access to such information becomes a challenging task for users. Selecting the appropriate audience, even from within their own friend network, can be fraught with difficulties. PACMAN is a potential solution for this dilemma problem. It's a personal assistant agent that recommends personalized access control decisions based on the social context of any information disclosure by incorporating communities generated from the user's network structure and utilizing information in the user's profile. PACMAN provides accurate recommendations while minimizing intrusiveness.

2018-04-02
Ranakoti, P., Yadav, S., Apurva, A., Tomer, S., Roy, N. R..  2017.  Deep Web Online Anonymity. 2017 International Conference on Computing and Communication Technologies for Smart Nation (IC3TSN). :215–219.

Deep web, a hidden and encrypted network that crawls beneath the surface web today has become a social hub for various criminals who carry out their crime through the cyber space and all the crime is being conducted and hosted on the Deep Web. This research paper is an effort to bring forth various techniques and ways in which an internet user can be safe online and protect his privacy through anonymity. Understanding how user's data and private information is phished and what are the risks of sharing personal information on social media.

2018-03-19
Vougioukas, Michail, Androutsopoulos, Ion, Paliouras, Georgios.  2017.  A Personalized Global Filter To Predict Retweets. Proceedings of the 25th Conference on User Modeling, Adaptation and Personalization. :393–394.

Information shared on Twitter is ever increasing and users-recipients are overwhelmed by the number of tweets they receive, many of which of no interest. Filters that estimate the interest of each incoming post can alleviate this problem, for example by allowing users to sort incoming posts by predicted interest (e.g., "top stories" vs. "most recent" in Facebook). Global and personal filters have been used to detect interesting posts in social networks. Global filters are trained on large collections of posts and reactions to posts (e.g., retweets), aiming to predict how interesting a post is for a broad audience. In contrast, personal filters are trained on posts received by a particular user and the reactions of the particular user. Personal filters can provide recommendations tailored to a particular user's interests, which may not coincide with the interests of the majority of users that global filters are trained to predict. On the other hand, global filters are typically trained on much larger datasets compared to personal filters. Hence, global filters may work better in practice, especially with new users, for which personal filters may have very few training instances ("cold start" problem). Following Uysal and Croft, we devised a hybrid approach that combines the strengths of both global and personal filters. As in global filters, we train a single system on a large, multi-user collection of tweets. Each tweet, however, is represented as a feature vector with a number of user-specific features.