Visible to the public Biblio

Filters: Keyword is Tutorials  [Clear All Filters]
2023-03-17
Al-Kateb, Mohammed, Eltabakh, Mohamed Y., Al-Omari, Awny, Brown, Paul G..  2022.  Analytics at Scale: Evolution at Infrastructure and Algorithmic Levels. 2022 IEEE 38th International Conference on Data Engineering (ICDE). :3217–3220.
Data Analytics is at the core of almost all modern ap-plications ranging from science and finance to healthcare and web applications. The evolution of data analytics over the last decade has been dramatic - new methods, new tools and new platforms - with no slowdown in sight. This rapid evolution has pushed the boundaries of data analytics along several axis including scalability especially with the rise of distributed infrastructures and the Big Data era, and interoperability with diverse data management systems such as relational databases, Hadoop and Spark. However, many analytic application developers struggle with the challenge of production deployment. Recent experience suggests that it is difficult to deliver modern data analytics with the level of reliability, security and manageability that has been a feature of traditional SQL DBMSs. In this tutorial, we discuss the advances and innovations introduced at both the infrastructure and algorithmic levels, directed at making analytic workloads scale, while paying close attention to the kind of quality of service guarantees different technology provide. We start with an overview of the classical centralized analytical techniques, describing the shift towards distributed analytics over non-SQL infrastructures. We contrast such approaches with systems that integrate analytic functionality inside, above or adjacent to SQL engines. We also explore how Cloud platforms' virtualization capabilities make it easier - and cheaper - for end users to apply these new analytic techniques to their data. Finally, we conclude with the learned lessons and a vision for the near future.
ISSN: 2375-026X
2023-02-03
Patil, Kanchan, Arra, Sai Rohith.  2022.  Detection of Phishing and User Awareness Training in Information Security: A Systematic Literature Review. 2022 2nd International Conference on Innovative Practices in Technology and Management (ICIPTM). 2:780–786.
Phishing is a method of online fraud where attackers are targeted to gain access to the computer systems for monetary benefits or personal gains. In this case, the attackers pose themselves as legitimate entities to gain the users' sensitive information. Phishing has been significant concern over the past few years. The firms are recording an increase in phishing attacks primarily aimed at the firm's intellectual property and the employees' sensitive data. As a result, these attacks force firms to spend more on information security, both in technology-centric and human-centric approaches. With the advancements in cyber-security in the last ten years, many techniques evolved to detect phishing-related activities through websites and emails. This study focuses on the latest techniques used for detecting phishing attacks, including the usage of Visual selection features, Machine Learning (ML), and Artificial Intelligence (AI) to see the phishing attacks. New strategies for identifying phishing attacks are evolving, but limited standardized knowledge on phishing identification and mitigation is accessible from user awareness training. So, this study also focuses on the role of security-awareness movements to minimize the impact of phishing attacks. There are many approaches to train the user regarding these attacks, such as persona-centred training, anti-phishing techniques, visual discrimination training and the usage of spam filters, robust firewalls and infrastructure, dynamic technical defense mechanisms, use of third-party certified software to mitigate phishing attacks from happening. Therefore, the purpose of this paper is to carry out a systematic analysis of literature to assess the state of knowledge in prominent scientific journals on the identification and prevention of phishing. Forty-three journal articles with the perspective of phishing detection and prevention through awareness training were reviewed from 2011 to 2020. This timely systematic review also focuses on the gaps identified in the selected primary studies and future research directions in this area.
2022-04-20
Hussain, Alefiya.  2016.  Resilience, a Key Property of Infrastructure CPS. 2016 American Control Conference (ACC). :2668–2668.
The information network plays a crucial role in the stability of infrastructure CPS. The adoption of measurements and networked control technologies provide timely measurements that can be used to design control strategies for the stability of the energy network during a failure or a fault. However, these technologies have also significantly increased the exposure to novel security threats and risks. This tutorial will present case studies for methodological security and resiliency assessment for infrastructure cyber-physical systems on the DETER networking and cyber security testbed.
2021-05-25
Bosio, Alberto, Canal, Ramon, Di Carlo, Stefano, Gizopoulos, Dimitris, Savino, Alessandro.  2020.  Cross-Layer Soft-Error Resilience Analysis of Computing Systems. 2020 50th Annual IEEE-IFIP International Conference on Dependable Systems and Networks-Supplemental Volume (DSN-S). :79—79.
In a world with computation at the epicenter of every activity, computing systems must be highly resilient to errors even if miniaturization makes the underlying hardware unreliable. Techniques able to guarantee high reliability are associated to high costs. Early resilience analysis has the potential to support informed design decisions to maximize system-level reliability while minimizing the associated costs. This tutorial focuses on early cross-layer (hardware and software) resilience analysis considering the full computing continuum (from IoT/CPS to HPC applications) with emphasis on soft errors.
2019-11-12
Padon, Oded.  2018.  Deductive Verification of Distributed Protocols in First-Order Logic. 2018 Formal Methods in Computer Aided Design (FMCAD). :1-1.

Formal verification of infinite-state systems, and distributed systems in particular, is a long standing research goal. In the deductive verification approach, the programmer provides inductive invariants and pre/post specifications of procedures, reducing the verification problem to checking validity of logical verification conditions. This check is often performed by automated theorem provers and SMT solvers, substantially increasing productivity in the verification of complex systems. However, the unpredictability of automated provers presents a major hurdle to usability of these tools. This problem is particularly acute in case of provers that handle undecidable logics, for example, first-order logic with quantifiers and theories such as arithmetic. The resulting extreme sensitivity to minor changes has a strong negative impact on the convergence of the overall proof effort.

2018-11-14
Teive, R. C. G., Neto, E. A. C. A., Mussoi, F. L. R., Rese, A. L. R., Coelho, J., Andrade, F. F., Cardoso, F. L., Nogueira, F., Parreira, J. P..  2017.  Intelligent System for Automatic Performance Evaluation of Distribution System Operators. 2017 19th International Conference on Intelligent System Application to Power Systems (ISAP). :1–6.
The performance evaluation of distribution network operators is essential for the electrical utilities to know how prepared the operators are to execute their operation standards and rules, searching for minimizing the time of power outage, after some contingency. The performance of operators can be evaluated by the impact of their actions on several technical and economic indicators of the distribution system. This issue is a complex problem, whose solution involves necessarily some expertise and a multi-criteria evaluation. This paper presents a Tutorial Expert System (TES) for performance evaluation of electrical distribution network operators after a given contingency in the electrical network. The proposed TES guides the evaluation process, taking into account technical, economic and personal criteria, aiding the quantification of these criteria. A case study based on real data demonstrates the applicability of the performance evaluation procedure of distribution network operators.
2017-11-20
Weichselbaum, L., Spagnuolo, M., Janc, A..  2016.  Adopting Strict Content Security Policy for XSS Protection. 2016 IEEE Cybersecurity Development (SecDev). :149–149.

Content Security Policy is a mechanism designed to prevent the exploitation of XSS – the most common high-risk web application flaw. CSP restricts which scripts can be executed by allowing developers to define valid script sources; an attacker with a content-injection flaw should not be able to force the browser to execute arbitrary malicious scripts. Currently, CSP is commonly used in conjunction with domain-based script whitelist, where the existence of a single unsafe endpoint in the script whitelist effectively removes the value of the policy as a protection against XSS ( some examples ).

2017-02-21
J. Qadir, O. Hasan.  2015.  "Applying Formal Methods to Networking: Theory, Techniques, and Applications". IEEE Communications Surveys Tutorials. 17:256-291.

Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet, which began as a research experiment, was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, particularly for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification and to an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design-in particular, the software defined networking (SDN) paradigm-offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods and present a survey of its applications to networking.

2015-05-06
Tehranipoor, M., Forte, D..  2014.  Tutorial T4: All You Need to Know about Hardware Trojans and Counterfeit ICs. VLSI Design and 2014 13th International Conference on Embedded Systems, 2014 27th International Conference on. :9-10.

The migration from a vertical to horizontal business model has made it easier to introduce hardware Trojans and counterfeit electronic parts into the electronic component supply chain. Hardware Trojans are malicious modifications made to original IC designs that reduce system integrity (change functionality, leak private data, etc.). Counterfeit parts are often below specification and/or of substandard quality. The existence of Trojans and counterfeit parts creates risks for the life-critical systems and infrastructures that incorporate them including automotive, aerospace, military, and medical systems. In this tutorial, we will cover: (i) Background and motivation for hardware Trojan and counterfeit prevention/detection; (ii) Taxonomies related to both topics; (iii) Existing solutions; (iv) Open challenges; (v) New and unified solutions to address these challenges.
 

2015-05-05
Di Renzo, M., Haas, H., Ghrayeb, A., Sugiura, S., Hanzo, L..  2014.  Spatial Modulation for Generalized MIMO: Challenges, Opportunities, and Implementation. Proceedings of the IEEE. 102:56-103.

A key challenge of future mobile communication research is to strike an attractive compromise between wireless network's area spectral efficiency and energy efficiency. This necessitates a clean-slate approach to wireless system design, embracing the rich body of existing knowledge, especially on multiple-input-multiple-ouput (MIMO) technologies. This motivates the proposal of an emerging wireless communications concept conceived for single-radio-frequency (RF) large-scale MIMO communications, which is termed as SM. The concept of SM has established itself as a beneficial transmission paradigm, subsuming numerous members of the MIMO system family. The research of SM has reached sufficient maturity to motivate its comparison to state-of-the-art MIMO communications, as well as to inspire its application to other emerging wireless systems such as relay-aided, cooperative, small-cell, optical wireless, and power-efficient communications. Furthermore, it has received sufficient research attention to be implemented in testbeds, and it holds the promise of stimulating further vigorous interdisciplinary research in the years to come. This tutorial paper is intended to offer a comprehensive state-of-the-art survey on SM-MIMO research, to provide a critical appraisal of its potential advantages, and to promote the discussion of its beneficial application areas and their research challenges leading to the analysis of the technological issues associated with the implementation of SM-MIMO. The paper is concluded with the description of the world's first experimental activities in this vibrant research field.
 

Qadir, J., Hasan, O..  2015.  Applying Formal Methods to Networking: Theory, Techniques, and Applications. Communications Surveys Tutorials, IEEE. 17:256-291.

Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet, which began as a research experiment, was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, particularly for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification and to an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design-in particular, the software defined networking (SDN) paradigm-offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods and present a survey of its applications to networking.