Visible to the public Biblio

Filters: Keyword is formal specifications  [Clear All Filters]
2022-03-14
Obeidat, Nawar, Purdy, Carla.  2021.  Improving Security in SCADA Systems through Model-checking with TLA+. 2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS). :832—835.
In today’s world, Supervisory Control and Data Acquisition (SCADA) networks have many critical tasks, including managing infrastructure such as power, water, and sewage systems, and controlling automated manufacturing and transportation systems. Securing these systems is crucial. Here we describe a project to design security into an example system using formal specifications. Our example system is a component in a cybersecurity testbed at the University of Cincinnati, which was described in previous work. We also show how a design flaw can be discovered and corrected early in the system development process.
2021-10-12
Vinarskii, Evgenii, Demakov, Alexey, Kamkin, Alexander, Yevtushenko, Nina.  2020.  Verifying cryptographic protocols by Tamarin Prover. 2020 Ivannikov Memorial Workshop (IVMEM). :69–75.
Cryptographic protocols are utilized for establishing a secure session between “honest” agents which communicate strictly according to the protocol rules as well as for ensuring the authenticated and confidential transmission of messages. The specification of a cryptographic protocol is usually presented as a set of requirements for the sequences of transmitted messages including the format of such messages. Note that protocol can describe several execution scenarios. All these requirements lead to a huge formal specification for a real cryptographic protocol and therefore, it is difficult to verify the security of the whole cryptographic protocol at once. In this paper, to overcome this problem, we suggest verifying the protocol security for its fragments. Namely, we verify the security properties for a special set of so-called traces of the cryptographic protocol. Intuitively, a trace of the cryptographic protocol is a sequence of computations, value checks, and transmissions on the sides of “honest” agents permitted by the protocol. In order to choose such set of traces, we introduce an Adversary model and the notion of a similarity relation for traces. We then verify the security properties of selected traces with Tamarin Prover. Experimental results for the EAP and Noise protocols clearly show that this approach can be promising for automatic verification of large protocols.
2021-08-12
Awadelkarim Mohamed, Awad M., Abdallah M. Hamad, Yahia.  2020.  IoT Security: Review and Future Directions for Protection Models. 2020 International Conference on Computing and Information Technology (ICCIT-1441). :1—4.
Nowadays, Internet of Things (IoT) has gained considerable significance and concern, consequently, and in particular with widespread usage and adoption of the IoT applications and projects in various industries, the consideration of the IoT Security has increased dramatically too. Therefore, this paper presents a concise and a precise review for the current state of the IoT security models and frameworks. The paper also proposes a new unified criteria and characteristics, namely Formal, Inclusive, Future, Agile, and Compliant with the standards (FIFAC), in order to assure modularity, reliability, and trust for future IoT security models, as well as, to provide an assortment of adaptable controls for protecting the data consistently across all IoT layers.
2020-04-24
Emeka, Busalire Onesmus, Liu, Shaoying.  2018.  Assessing and extracting software security vulnerabilities in SOFL formal specifications. 2018 International Conference on Electronics, Information, and Communication (ICEIC). :1—4.

The growth of the internet has brought along positive gains such as the emergence of a highly interconnected world. However, on the flip side, there has been a growing concern on how secure distributed systems can be built effectively and tested for security vulnerabilities prior to deployment. Developing a secure software product calls for a deep technical understanding of some complex issues with regards to the software and its operating environment, as well as embracing a systematic approach of analyzing the software. This paper proposes a method for identifying software security vulnerabilities from software requirement specifications written in Structured Object-oriented Formal Language (SOFL). Our proposed methodology leverages on the concept of providing an early focus on security by identifying potential security vulnerabilities at the requirement analysis and verification phase of the software development life cycle.

2017-02-21
J. Qadir, O. Hasan.  2015.  "Applying Formal Methods to Networking: Theory, Techniques, and Applications". IEEE Communications Surveys Tutorials. 17:256-291.

Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet, which began as a research experiment, was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, particularly for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification and to an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design-in particular, the software defined networking (SDN) paradigm-offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods and present a survey of its applications to networking.

2015-05-05
Qadir, J., Hasan, O..  2015.  Applying Formal Methods to Networking: Theory, Techniques, and Applications. Communications Surveys Tutorials, IEEE. 17:256-291.

Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet, which began as a research experiment, was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, particularly for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification and to an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design-in particular, the software defined networking (SDN) paradigm-offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods and present a survey of its applications to networking.