Biblio
Filters: Keyword is samarium alloys [Clear All Filters]
Magnetic Domain Structures and Magnetic Properties of Lightly Nd-Doped Sm–Co Magnets With High Squareness and High Heat Resistance. IEEE Transactions on Magnetics. 55:1–4.
.
2019. The relationship between magnetic domain structures and magnetic properties of Nd-doped Sm(Fe, Cu, Zr, Co)7.5 was investigated. In the preparation process, slow cooling between sintering and solution treatment was employed to promote homogenization of microstructures. The developed magnet achieved a maximum energy product, [BH]m, of 33.8 MGOe and coercivity, Hcb, of 11.2 kOe at 25 °C, respectively. Moreover, B-H line at 150 °C was linear, which means that irreversible demagnetization does not occur even at 150 °C. Temperature coefficients of remanent magnetic flux density, Br, and intrinsic coercivity, Hcj, were 0.035%/K and 0.24%/K, respectively, as usual the conventional Sm-Co magnet. Magnetic domain structures were observed with a Kerr effect microscope with a magnetic field applied from 0 to -20 kOe, and then reverse magnetic domains were generated evenly from grain boundaries. Microstructures referred to as “cell structures” were observed with a scanning transmission electron microscope. Fe and Cu were separated to 2-17 and 1-5 phases, respectively. Moreover, without producing impurity phases, Nd showed the same composition behavior with Sm in a cell structure.
High-Temperature Magnetic Properties of Anisotropic SmCo7/Fe(Co) Bulk Nanocomposite Magnets. IEEE Transactions on Magnetics. 54:1–5.
.
2018. High-temperature magnetic properties of the anisotropic bulk SmCo7/Fe(Co) nanocomposite magnets prepared by multistep deformation have been investigated and compared with the corresponding isotropic nanocomposites. The anisotropic SmCo7/Fe(Co) nanocomposites with a Fe(Co) fraction of 28% exhibit much higher energy products than the corresponding isotropic nanocomposites at both room and high temperatures. These magnets show a small remanence (α = -0.022%/K) and a coercivity (β = -0.25%/K) temperature coefficient which can be comparable to those of the conventional SmCo5 and Sm2Co17 high-temperature magnets. The magnetic properties of these nanocomposites at high temperatures are sensitive to the weight fractions of the Fe(Co) phase. This paper demonstrates that the anisotropic bulk SmCo7/Fe(Co) nanocomposites have better high-temperature magnetic properties than the corresponding isotropic ones.