Biblio
Utilization of Wireless sensor network is growing with the development in modern technologies. On other side electromagnetic spectrum is limited resources. Application of wireless communication is expanding day by day which directly threaten electromagnetic spectrum band to become congested. Cognitive Radio solves this issue by implementation of unused frequency bands as "White Space". There is another important factor that gets attention in cognitive model i.e: Wireless Security. One of the famous causes of security threat is malicious node in cognitive radio wireless sensor networks (CRWSN). The goal of this paper is to focus on security issues which are related to CRWSN as Fusion techniques, Co-operative Spectrum sensing along with two dangerous attacks in CR: Primary User Emulation (PUE) and Spectrum Sensing Data Falsification (SSDF).
This paper investigates closed-form expressions to evaluate the performance of the Compressive Sensing (CS) based Energy Detector (ED). The conventional way to approximate the probability density function of the ED test statistic invokes the central limit theorem and considers the decision variable as Gaussian. This approach, however, provides good approximation only if the number of samples is large enough. This is not usually the case in CS framework, where the goal is to keep the sample size low. Moreover, working with a reduced number of measurements is of practical interest for general spectrum sensing in cognitive radio applications, where the sensing time should be sufficiently short since any time spent for sensing cannot be used for data transmission on the detected idle channels. In this paper, we make use of low-complexity approximations based on algebraic transformations of the one-dimensional Gaussian Q-function. More precisely, this paper provides new closed-form expressions for accurate evaluation of the CS-based ED performance as a function of the compressive ratio and the Signal-to-Noise Ratio (SNR). Simulation results demonstrate the increased accuracy of the proposed equations compared to existing works.
Dynamic spectrum sharing techniques applied in the UHF TV band have been developed to allow secondary WiFi transmission in areas with active TV users. This technique of dynamically controlling the exclusion zone enables vastly increasing secondary spectrum re-use, compared to the "TV white space" model where TV transmitters determine the exclusion zone and only "idle" channels can be re-purposed. However, in current such dynamic spectrum sharing systems, the sensitive operation parameters of both primary TV users (PUs) and secondary users (SUs) need to be shared with the spectrum database controller (SDC) for the purpose of realizing efficient spectrum allocation. Since such SDC server is not necessarily operated by a trusted third party, those current systems might cause essential threatens to the privacy requirement from both PUs and SUs. To address this privacy issue, this paper proposes a privacy-preserving spectrum sharing system between PUs and SUs, which realizes the spectrum allocation decision process using efficient multi-party computation (MPC) technique. In this design, the SDC only performs secure computation over encrypted input from PUs and SUs such that none of the PU or SU operation parameters will be revealed to SDC. The evaluation of its performance illustrates that our proposed system based on efficient MPC techniques can perform dynamic spectrum allocation process between PUs and SUs efficiently while preserving users' privacy.
With the growing demand for increased spectral efficiencies, there has been renewed interest in enabling full-duplex communications. However, existing approaches to enable full-duplex require a clean-slate approach to address the key challenge in full-duplex, namely self-interference suppression. This serves as a big deterrent to enabling full-duplex in existing cellular networks. Towards our vision of enabling full-duplex in legacy cellular, specifically LTE networks, with no modifications to existing hardware at BS and client as well as technology specific industry standards, we present the design of our experimental system FD-LTE, that incorporates a combination of passive SI cancellation schemes, with legacy LTE half-duplex BS and client devices. We build a prototype of FD-LTE, integrate it with LTE's evolved packet core and conduct over-the-air experiments to explore the feasibility and potential for full-duplex with legacy LTE networks. We report promising experimental results from FD-LTE, which currently applies to scenarios with limited ranges that is typical of small cells.