Biblio
Nowadays due to economic reasons most of the semiconductor companies prefer to outsource the manufacturing part of their designs to third fabrication foundries, the so-called fabs. Untrustworthy fabs can extract circuit blocks, the called intellectual properties (IPs), from the layouts and then pirate them. Such fabs are suspected of hardware Trojan (HT) threat in which malicious circuits are added to the layouts for sabotage objectives. HTs lead up to increase power consumption in HT-infected circuits. However, due to process variations, the power of HTs including few gates in million-gate circuits is not detectable in power consumption analysis (PCA). Thus, such circuits should be considered as a collection of small sub-circuits, and PCA must be individually performed for each one of them. In this article, we introduce an approach facilitating PCA-based HT detection methods. Concerning this approach, we propose a new logic locking method and algorithm. Logic locking methods and algorithm are usually employed against IP piracy. They modify circuits such that they do not correctly work without applying a correct key to. Our experiments at the gate level and post-synthesis show that the proposed locking method and algorithm increase the proportion of HT activity and consequently HT power to circuit power.
Security is a major challenge preventing wide deployment of the smart grid technology. Typically, the classical power grid is protected with a set of isolated security tools applied to individual grid components and layers ignoring their cross-layer interaction. Such an approach does not address the smart grid security requirements because usually intricate attacks are cross-layer exploiting multiple vulnerabilities at various grid layers and domains. We advance a conceptual layering model of the smart grid and a high-level overview of a security framework, termed CyNetPhy, towards enabling cross-layer security of the smart grid. CyNetPhy tightly integrates and coordinates between three interrelated, and highly cooperative real-time security systems crossing section various layers of the grid cyber and physical domains to simultaneously address the grid's operational and security requirements. In this article, we present in detail the physical security layer (PSL) in CyNetPhy. We describe an attack scenario raising the emerging hardware Trojan threat in process control systems (PCSes) and its novel PSL resolution leveraging the model predictive control principles. Initial simulation results illustrate the feasibility and effectiveness of the PSL.