Visible to the public Biblio

Filters: Keyword is signal strength  [Clear All Filters]
2023-03-17
Hasnaeen, Shah Md Nehal, Chrysler, Andrew.  2022.  Detection of Malware in UHF RFID User Memory Bank using Random Forest Classifier on Signal Strength Data in the Frequency Domain. 2022 IEEE International Conference on RFID (RFID). :47–52.
A method of detecting UHF RFID tags with SQL in-jection virus code written in its user memory bank is explored. A spectrum analyzer took signal strength readings in the frequency spectrum while an RFID reader was reading the tag. The strength of the signal transmitted by the RFID tag in the UHF range, more specifically within the 902–908 MHz sub-band, was used as data to train a Random Forest model for Malware detection. Feature reduction is accomplished by dividing the observed spectrum into 15 ranges with a bandwidth of 344 kHz each and detecting the number of maxima in each range. The malware-infested tag could be detected more than 80% of the time. The frequency ranges contributing most in this detection method were the low (903.451-903.795 MHz, 902.418-902.762 MHz) and high (907.238-907.582 MHz) bands in the observed spectrum.
ISSN: 2573-7635
2020-10-26
Rimjhim, Roy, Pradeep Kumar, Prakash Singh, Jyoti.  2018.  Encircling the Base Station for Source Location Privacy in Wireless Sensor Networks. 2018 3rd International Conference on Computational Systems and Information Technology for Sustainable Solutions (CSITSS). :307–312.
Location Privacy breach in Wireless Sensor Networks (WSNs) cannot be controlled by encryption techniques as all the communications are signal based. Signal strength can be analyzed to reveal many routing information. Adversary takes advantage of this and tracks the incoming packet to know the direction of the packet. With the information of location of origin of packets, the Source is also exposed which is generating packets on sensing any object. Thus, the location of subject is exposed. For protecting such privacy breaches, routing schemes are used which create anonymization or diverts the adversary. In this paper, we are using `Dummy' packets that will be inserted into real traffic to confuse the adversary. The dummy packets are such inserted that they encircle the Sink or Base Station. These Dummy packets are send with a value of TTL (Time To Live) field such that they travel only a few hops. Since adversary starts backtracking from the Sink, it will be trapped in the dummy traffic. In our protocol, we are confusing adversary without introducing any delay in packet delivery. Adversary uses two common methods for knowing the source i.e. Traffic Analysis and Back-tracing. Mathematically and experimentally, our proposal is sound for both type of methods. Overhead is also balanced as packets will not live long.
2015-05-05
Lixing Song, Shaoen Wu.  2014.  Cross-layer wireless information security. Computer Communication and Networks (ICCCN), 2014 23rd International Conference on. :1-9.

Wireless information security generates shared secret keys from reciprocal channel dynamics. Current solutions are mostly based on temporal per-frame channel measurements of signal strength and suffer from low key generate rate (KGR), large budget in channel probing, and poor secrecy if a channel does not temporally vary significantly. This paper designs a cross-layer solution that measures noise-free per-symbol channel dynamics across both time and frequency domain and derives keys from the highly fine-grained per-symbol reciprocal channel measurements. This solution consists of merits that: (1) the persymbol granularity improves the volume of available uncorrelated channel measurements by orders of magnitude over per-frame granularity in conventional solutions and so does KGR; 2) the solution exploits subtle channel fluctuations in frequency domain that does not force users to move to incur enough temporal variations as conventional solutions require; and (3) it measures noise-free channel response that suppresses key bit disagreement between trusted users. As a result, in every aspect, the proposed solution improves the security performance by orders of magnitude over conventional solutions. The performance has been evaluated on both a GNU SDR testbed in practice and a local GNU Radio simulator. The cross-layer solution can generate a KGR of 24.07 bits per probing frame on testbed or 19 bits in simulation, although conventional optimal solutions only has a KGR of at most one or two bit per probing frame. It also has a low key bit disagreement ratio while maintaining a high entropy rate. The derived keys show strong independence with correlation coefficients mostly less than 0.05. Furthermore, it is empirically shown that any slight physical change, e.g. a small rotation of antenna, results in fundamentally different cross-layer frequency measurements, which implies the strong secrecy and high efficiency of the proposed solution.