Biblio
We re-define multimodality and introduce a simple approach to multimodal and arbitrary style transfer. Conventionally, style transfer methods are limited to synthesizing a deterministic output based on a single style, and there has been no work that can generate multiple images of various details, or multimodality, given a single style. In this work, we explore a way to achieve multimodal and arbitrary style transfer by injecting noise to a unimodal method. This novel approach does not require any trainable parameters, and can be readily applied to any unimodal style transfer methods with separate style encoding sub-network in literature. Experimental results show that while being able to transfer an image to multiple domains in various ways, the image quality is highly competitive with contemporary models in style transfer.