Visible to the public Biblio

Filters: Keyword is software products  [Clear All Filters]
2020-03-23
Xu, Yilin, Ge, Weimin, Li, Xiaohong, Feng, Zhiyong, Xie, Xiaofei, Bai, Yude.  2019.  A Co-Occurrence Recommendation Model of Software Security Requirement. 2019 International Symposium on Theoretical Aspects of Software Engineering (TASE). :41–48.
To guarantee the quality of software, specifying security requirements (SRs) is essential for developing systems, especially for security-critical software systems. However, using security threat to determine detailed SR is quite difficult according to Common Criteria (CC), which is too confusing and technical for non-security specialists. In this paper, we propose a Co-occurrence Recommend Model (CoRM) to automatically recommend software SRs. In this model, the security threats of product are extracted from security target documents of software, in which the related security requirements are tagged. In order to establish relationships between software security threat and security requirement, semantic similarities between different security threat is calculated by Skip-thoughts Model. To evaluate our CoRM model, over 1000 security target documents of 9 types software products are exploited. The results suggest that building a CoRM model via semantic similarity is feasible and reliable.
2020-02-10
Palacio, David N., McCrystal, Daniel, Moran, Kevin, Bernal-Cárdenas, Carlos, Poshyvanyk, Denys, Shenefiel, Chris.  2019.  Learning to Identify Security-Related Issues Using Convolutional Neural Networks. 2019 IEEE International Conference on Software Maintenance and Evolution (ICSME). :140–144.
Software security is becoming a high priority for both large companies and start-ups alike due to the increasing potential for harm that vulnerabilities and breaches carry with them. However, attaining robust security assurance while delivering features requires a precarious balancing act in the context of agile development practices. One path forward to help aid development teams in securing their software products is through the design and development of security-focused automation. Ergo, we present a novel approach, called SecureReqNet, for automatically identifying whether issues in software issue tracking systems describe security-related content. Our approach consists of a two-phase neural net architecture that operates purely on the natural language descriptions of issues. The first phase of our approach learns high dimensional word embeddings from hundreds of thousands of vulnerability descriptions listed in the CVE database and issue descriptions extracted from open source projects. The second phase then utilizes the semantic ontology represented by these embeddings to train a convolutional neural network capable of predicting whether a given issue is security-related. We evaluated SecureReqNet by applying it to identify security-related issues from a dataset of thousands of issues mined from popular projects on GitLab and GitHub. In addition, we also applied our approach to identify security-related requirements from a commercial software project developed by a major telecommunication company. Our preliminary results are encouraging, with SecureReqNet achieving an accuracy of 96% on open source issues and 71.6% on industrial requirements.
2017-12-20
Alqahtani, S. S., Eghan, E. E., Rilling, J..  2017.  Recovering Semantic Traceability Links between APIs and Security Vulnerabilities: An Ontological Modeling Approach. 2017 IEEE International Conference on Software Testing, Verification and Validation (ICST). :80–91.

Over the last decade, a globalization of the software industry took place, which facilitated the sharing and reuse of code across existing project boundaries. At the same time, such global reuse also introduces new challenges to the software engineering community, with not only components but also their problems and vulnerabilities being now shared. For example, vulnerabilities found in APIs no longer affect only individual projects but instead might spread across projects and even global software ecosystem borders. Tracing these vulnerabilities at a global scale becomes an inherently difficult task since many of the existing resources required for such analysis still rely on proprietary knowledge representation. In this research, we introduce an ontology-based knowledge modeling approach that can eliminate such information silos. More specifically, we focus on linking security knowledge with other software knowledge to improve traceability and trust in software products (APIs). Our approach takes advantage of the Semantic Web and its reasoning services, to trace and assess the impact of security vulnerabilities across project boundaries. We present a case study, to illustrate the applicability and flexibility of our ontological modeling approach by tracing vulnerabilities across project and resource boundaries.

2015-05-05
Datta, E., Goyal, N..  2014.  Security attack mitigation framework for the cloud. Reliability and Maintainability Symposium (RAMS), 2014 Annual. :1-6.

Cloud computing brings in a lot of advantages for enterprise IT infrastructure; virtualization technology, which is the backbone of cloud, provides easy consolidation of resources, reduction of cost, space and management efforts. However, security of critical and private data is a major concern which still keeps back a lot of customers from switching over from their traditional in-house IT infrastructure to a cloud service. Existence of techniques to physically locate a virtual machine in the cloud, proliferation of software vulnerability exploits and cross-channel attacks in-between virtual machines, all of these together increases the risk of business data leaks and privacy losses. This work proposes a framework to mitigate such risks and engineer customer trust towards enterprise cloud computing. Everyday new vulnerabilities are being discovered even in well-engineered software products and the hacking techniques are getting sophisticated over time. In this scenario, absolute guarantee of security in enterprise wide information processing system seems a remote possibility; software systems in the cloud are vulnerable to security attacks. Practical solution for the security problems lies in well-engineered attack mitigation plan. At the positive side, cloud computing has a collective infrastructure which can be effectively used to mitigate the attacks if an appropriate defense framework is in place. We propose such an attack mitigation framework for the cloud. Software vulnerabilities in the cloud have different severities and different impacts on the security parameters (confidentiality, integrity, and availability). By using Markov model, we continuously monitor and quantify the risk of compromise in different security parameters (e.g.: change in the potential to compromise the data confidentiality). Whenever, there is a significant change in risk, our framework would facilitate the tenants to calculate the Mean Time to Security Failure (MTTSF) cloud and allow them to adopt a dynamic mitigation plan. This framework is an add-on security layer in the cloud resource manager and it could improve the customer trust on enterprise cloud solutions.