Visible to the public Biblio

Filters: Keyword is Tsunami  [Clear All Filters]
2022-05-06
Hariyale, Ashish, Thawre, Aakriti, Chandavarkar, B. R..  2021.  Mitigating unsecured data forwarding related attack of underwater sensor network. 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT). :1—5.
To improve communication underwater, the underwater sensor networks (UWSN) provide gains for many different underwater applications, like Underwater Data-centers, Aquatic Monitoring, Tsunami Monitoring Systems, Aquatic Monitoring, Underwater Oil Field Discovery, Submarine Target Localization, Surveilling Water Territory of the Country via UWSN, Submarine Target Localization and many more. underwater applications are dependent on secure data communication in an underwater environment, so Data transmission in Underwater Sensor Network is a need of the future. Underwater data transmission itself is a big challenge due to various limitations of underwater communication mediums like lower bandwidth, multipath effect, path loss, propagation delay, noise, Doppler spread, and so on. These challenges make the underwater networks one of the most vulnerable networks for many different security attacks like sinkhole, spoofing, wormhole, misdirection, etc. It causes packets unable to be delivered to the destination, and even worse forward them to malicious nodes. A compromised node, which may be a router, intercepts packets going through it, and selectively drops them or can perform some malicious activity. This paper presents a solution to Mitigate unsecured data forwarding related attacks of an underwater sensor network, our solution uses a pre-shared key to secure communication and hashing algorithm to maintain the integrity of stored locations at head node and demonstration of attack and its mitigation done on Unetstack software.
2021-07-08
Signori, Alberto, Campagnaro, Filippo, Wachlin, Kim-Fabian, Nissen, Ivor, Zorzi, Michele.  2020.  On the Use of Conversation Detection to Improve the Security of Underwater Acoustic Networks. Global Oceans 2020: Singapore – U.S. Gulf Coast. :1—8.
Security is one of the key aspects of underwater acoustic networks, due to the critical importance of the scenarios in which these networks can be employed. For example, attacks performed to military underwater networks or to assets deployed for tsunami prevention can lead to disastrous consequences. Nevertheless, countermeasures to possible network attacks have not been widely investigated so far. One way to identify possible attackers is by using reputation, where a node gains trust each time it exhibits a good behavior, and loses trust each time it behaves in a suspicious way. The first step for analyzing if a node is behaving in a good way is to inspect the network traffic, by detecting all conversations. This paper proposes both centralized and decentralized algorithms for performing this operation, either from the network or from the node perspective. While the former can be applied only in post processing, the latter can also be used in real time by each node, and so can be used for creating the trust value. To evaluate the algorithms, we used real experimental data acquired during the EDA RACUN project (Robust Underwater Communication in Underwater Networks).
2020-12-14
Dong, X., Kang, Q., Yao, Q., Lu, D., Xu, Y., Liu, J..  2020.  Towards Primary User Sybil-proofness for Online Spectrum Auction in Dynamic Spectrum Access. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. :1439–1448.
Dynamic spectrum access (DSA) is a promising platform to solve the spectrum shortage problem, in which auction based mechanisms have been extensively studied due to good spectrum allocation efficiency and fairness. Recently, Sybil attacks were introduced in DSA, and Sybil-proof spectrum auction mechanisms have been proposed, which guarantee that each single secondary user (SU) cannot obtain a higher utility under more than one fictitious identities. However, existing Sybil-poof spectrum auction mechanisms achieve only Sybil-proofness for SUs, but not for primary users (PUs), and simulations show that a cheating PU in those mechanisms can obtain a higher utility by Sybil attacks. In this paper, we propose TSUNAMI, the first Truthful and primary user Sybil-proof aUctioN mechAnisM for onlIne spectrum allocation. Specifically, we compute the opportunity cost of each SU and screen out cost-efficient SUs to participate in spectrum allocation. In addition, we present a bid-independent sorting method and a sequential matching approach to achieve primary user Sybil-proofness and 2-D truthfulness, which means that each SU or PU can gain her maximal utility by bidding with her true valuation of spectrum. We evaluate the performance and validate the desired properties of our proposed mechanism through extensive simulations.