Visible to the public Biblio

Filters: Keyword is ROS agent  [Clear All Filters]
2020-12-15
Xu, Z., Zhu, Q..  2018.  Cross-Layer Secure and Resilient Control of Delay-Sensitive Networked Robot Operating Systems. 2018 IEEE Conference on Control Technology and Applications (CCTA). :1712—1717.

A Robot Operating System (ROS) plays a significant role in organizing industrial robots for manufacturing. With an increasing number of the robots, the operators integrate a ROS with networked communication to share the data. This cyber-physical nature exposes the ROS to cyber attacks. To this end, this paper proposes a cross-layer approach to achieve secure and resilient control of a ROS. In the physical layer, due to the delay caused by the security mechanism, we design a time-delay controller for the ROS agent. In the cyber layer, we define cyber states and use Markov Decision Process to evaluate the tradeoffs between physical and security performance. Due to the uncertainty of the cyber state, we extend the MDP to a Partially Observed Markov Decision Process (POMDP). We propose a threshold solution based on our theoretical results. Finally, we present numerical examples to evaluate the performance of the secure and resilient mechanism.