Visible to the public Biblio

Filters: Keyword is temperature sensor  [Clear All Filters]
2022-02-04
Anagnostopoulos, Nikolaos Athanasios, Fan, Yufan, Heinrich, Markus, Matyunin, Nikolay, Püllen, Dominik, Muth, Philipp, Hatzfeld, Christian, Rosenstihl, Markus, Arul, Tolga, Katzenbeisser, Stefan.  2021.  Low-Temperature Attacks Against Digital Electronics: A Challenge for the Security of Superconducting Modules in High-Speed Magnetic Levitation (MagLev) Trains. 2021 IEEE 14th Workshop on Low Temperature Electronics (WOLTE). :1–4.
This work examines volatile memory modules as ephemeral key storage for security applications in the context of low temperatures. In particular, we note that such memories exhibit a rising level of data remanence as the temperature decreases, especially for temperatures below 280 Kelvin. Therefore, these memories cannot be used to protect the superconducting modules found in high-speed Magnetic Levitation (MagLev) trains, as such modules most often require extremely low temperatures in order to provide superconducting applications. Thus, a novel secure storage solution is required in this case, especially within the oncoming framework concept of the internet of railway things, which is partially based on the increasing utilisation of commercial off-the-shelf components and potential economies of scale, in order to achieve cost efficiency and, thus, widespread adoption. Nevertheless, we do note that volatile memory modules can be utilised as intrinsic temperature sensors, especially at low temperatures, as the data remanence they exhibit at low temperatures is highly dependent on the ambient temperature, and can, therefore, be used to distinguish between different temperature levels.
2020-12-17
Kumar, R., Sarupria, G., Panwala, V., Shah, S., Shah, N..  2020.  Power Efficient Smart Home with Voice Assistant. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1—5.

The popularity and demand of home automation has increased exponentially in recent years because of the ease it provides. Recently, development has been done in this domain and few systems have been proposed that either use voice assistants or application for controlling the electrical appliances. However; less emphasis is laid on power efficiency and this system cannot be integrated with the existing appliances and hence, the entire system needs to be upgraded adding to a lot of additional cost in purchasing new appliances. In this research, the objective is to design such a system that emphasises on power efficiency as well as can be integrated with the already existing appliances. NodeMCU, along with Raspberry Pi, Firebase realtime database, is used to create a system that accomplishes such endeavours and can control relays, which can control these appliances without the need of replacing them. The experiments in this paper demonstrate triggering of electrical appliances using voice assistant, fire alarm on the basis of flame sensor and temperature sensor. Moreover; use of android application was presented for operating electrical appliances from a remote location. Lastly, the system can be modified by adding security cameras, smart blinds, robot vacuums etc.