Visible to the public Biblio

Filters: Keyword is electromagnetic wave scattering  [Clear All Filters]
2021-02-15
Doğu, S., Alidoustaghdam, H., Dilman, İ, Akıncı, M. N..  2020.  The Capability of Truncated Singular Value Decomposition Method for Through the Wall Microwave Imaging. 2020 IEEE Microwave Theory and Techniques in Wireless Communications (MTTW). 1:76–81.
In this study, a truncated singular value decomposition (TSVD) based computationally efficient through the wall imaging (TWI) is addressed. Mainly, two different scenarios with identical and non-identical multiple scatterers behind the wall have been considered. The scattered data are processed with special scheme in order to improve quality of the results and measurements are performed at four different frequencies. Next, effects of selecting truncation threshold in TSVD methods are analyzed and a detailed quantitative comparison is provided to demonstrate capabilities of these TSVD methods over selection of truncation threshold.
2019-01-16
Koshovy, G. I..  2018.  Mathematical Models of Acoustic Wave Scattering by a Finite Flat Impedance Strip Grating. 2018 XXIIIrd International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED). :137–140.
Analysis of acoustic wave scattering by a finite flat impedance strip grating is presented. The associated two-dimensional (2-D) boundary-value problem is considered in the full-wave manner and cast to a set of coupled integral equations. Based on them, we build several mathematical models. The focus of research is on the acoustic plane wave scattering by a grating of narrow impedance strips that has explicit asymptotic solution.
2015-05-05
Ponti, C., Pajewski, L., Schettini, G..  2014.  Simulation of scattering by cylindrical targets hidden behind a layer. Ground Penetrating Radar (GPR), 2014 15th International Conference on. :560-564.

Through-wall sensing of hidden objects is a topic that is receiving a wide interest in several application contexts, especially in the field of security. The success of the object retrieval relies on accurate scattering models as well as on reliable inversion algorithms. In this paper, a contribution to the modeling of direct scattering for Through-Wall Imaging applications is given. The approach deals with hidden scatterers that are circular cross-section metallic cylinders placed below a dielectric layer, and it is based on an analytical-numerical technique implementing Cylindrical Wave Approach. As the burial medium of the scatterers may be a dielectric of arbitrary permittivity, general problems of scattering by hidden objects may be considered.When the burial medium is filled with air, the technique can simulate objects concealed in a building interior. Otherwise, simulation of geophysical problems of targets buried in a layered soil can be performed. Numerical results of practical cases are reported in the paper, showing the potentialities of the technique for its use in inversion algorithms.