Biblio
Very high resolution satellite imagery used to be a rare commodity, with infrequent satellite pass-over times over a specific area-of-interest obviating many useful applications. Today, more and more such satellite systems are available, with visual analysis and interpretation of imagery still important to derive relevant features and changes from satellite data. In order to allow efficient, robust and routine image analysis for humanitarian purposes, semi-automated feature extraction is of increasing importance for operational emergency mapping tasks. In the frame of the European Earth Observation program COPERNICUS and related research activities under the European Union's Seventh Framework Program, substantial scientific developments and mapping services are dedicated to satellite based humanitarian mapping and monitoring. In this paper, recent results in methodological research and development of routine services in satellite mapping for humanitarian situational awareness are reviewed and discussed. Ethical aspects of sensitivity and security of humanitarian mapping are deliberated. Furthermore methods for monitoring and analysis of refugee/internally displaced persons camps in humanitarian settings are assessed. Advantages and limitations of object-based image analysis, sample supervised segmentation and feature extraction are presented and discussed.
This paper proposes an algorithm for multi-channel SAR ground moving target detection and estimation using the Fractional Fourier Transform(FrFT). To detect the moving target with low speed, the clutter is first suppressed by Displace Phase Center Antenna(DPCA), then the signal-to-clutter can be enhanced. Have suppressed the clutter, the echo of moving target remains and can be regarded as a chirp signal whose parameters can be estimated by FrFT. FrFT, one of the most widely used tools to time-frequency analysis, is utilized to estimate the Doppler parameters, from which the moving parameters, including the velocity and the acceleration can be obtained. The effectiveness of the proposed method is validated by the simulation.
Through-wall sensing of hidden objects is a topic that is receiving a wide interest in several application contexts, especially in the field of security. The success of the object retrieval relies on accurate scattering models as well as on reliable inversion algorithms. In this paper, a contribution to the modeling of direct scattering for Through-Wall Imaging applications is given. The approach deals with hidden scatterers that are circular cross-section metallic cylinders placed below a dielectric layer, and it is based on an analytical-numerical technique implementing Cylindrical Wave Approach. As the burial medium of the scatterers may be a dielectric of arbitrary permittivity, general problems of scattering by hidden objects may be considered.When the burial medium is filled with air, the technique can simulate objects concealed in a building interior. Otherwise, simulation of geophysical problems of targets buried in a layered soil can be performed. Numerical results of practical cases are reported in the paper, showing the potentialities of the technique for its use in inversion algorithms.