Biblio
Indoor localization has been a popular research subject in recent years. Usually, object localization using sound involves devices on the objects, acquiring data from stationary sound sources, or by localizing the objects with external sensors when the object generates sounds. Indoor localization systems using microphones have traditionally also used systems with several microphones, setting the limitations on cost efficiency and required space for the systems. In this paper, the goal is to investigate whether it is possible for a stationary system to localize a silent object in a room, with only one microphone and ambient noise as information carrier. A subtraction method has been combined with a fingerprint technique, to define and distinguish the noise absorption characteristic of the silent object in the frequency domain for different object positions. The absorption characteristics of several positions of the object is taken as comparison references, serving as fingerprints of known positions for an object. With the experiment result, the tentative idea has been verified as feasible, and noise signal based lateral localization of silent objects can be achieved.
In view of the difficulty in selecting wavelet base and decomposition level for wavelet-based de-noising method, this paper proposes an adaptive de-noising method based on Ensemble Empirical Mode Decomposition (EEMD). The autocorrelation, cross-correlation method is used to adaptively find the signal-to-noise boundary layer of the EEMD in this method. Then the noise dominant layer is filtered directly and the signal dominant layer is threshold de-noised. Finally, the de-noising signal is reconstructed by each layer component which is de-noised. This method solves the problem of mode mixing in Empirical Mode Decomposition (EMD) by using EEMD and combines the advantage of wavelet threshold. In this paper, we focus on the analysis and verification of the correctness of the adaptive determination of the noise dominant layer. The simulation experiment results prove that this de-noising method is efficient and has good adaptability.