Visible to the public Biblio

Filters: Keyword is Satellite broadcasting  [Clear All Filters]
2021-03-15
Nieto-Chaupis, H..  2020.  Hyper Secure Cognitive Radio Communications in an Internet of Space Things Network Based on the BB84 Protocol. 2020 Intermountain Engineering, Technology and Computing (IETC). :1–5.
Once constellation of satellites are working in a collaborative manner, the security of their messages would have to be highly secure from all angles of scenarios by which the praxis of eavesdropping constitutes a constant thread for the instability of the different tasks and missions. In this paper we employ the Bennet-Brassard commonly known as the BB84 protocol in conjunction to the technique of Cognitive Radio applied to the Internet of Space Things to build a prospective technology to guarantee the communications among geocentric orbital satellites. The simulations have yielded that for a constellation of 5 satellites, the probability of successful of completion the communication might be of order of 75% ±5%.
2018-02-02
Willis, J. M., Mills, R. F., Mailloux, L. O., Graham, S. R..  2017.  Considerations for secure and resilient satellite architectures. 2017 International Conference on Cyber Conflict (CyCon U.S.). :16–22.

Traditionally, the focus of security and ensuring confidentiality, integrity, and availability of data in spacecraft systems has been on the ground segment and the uplink/downlink components. Although these are the most obvious attack vectors, potential security risks against the satellite's platform is also a serious concern. This paper discusses a notional satellite architecture and explores security vulnerabilities using a systems-level approach. Viewing attacks through this paradigm highlights several potential attack vectors that conventional satellite security approaches fail to consider. If left undetected, these could yield physical effects limiting the satellite's mission or performance. The approach presented aids in risk analysis and gives insight into architectural design considerations which improve the system's overall resiliency.

2017-12-20
Xiaohao, S., Baolong, L..  2017.  An Investigation on Tree-Based Tags Anti-collision Algorithms in RFID. 2017 International Conference on Computer Network, Electronic and Automation (ICCNEA). :5–11.

The tree-based tags anti-collision algorithm is an important method in the anti-collision algorithms. In this paper, several typical tree algorithms are evaluated. The comparison of algorithms is summarized including time complexity, communication complexity and recognition, and the characteristics and disadvantages of each algorithm are pointed out. Finally, the improvement strategies of tree anti-collision algorithm are proposed, and the future research directions are also prospected.

Lu, W., Jiang, Y., Yin, C., Tao, X., Lai, P..  2017.  Security beamforming algorithms in multibeam satellite systems. 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). :1272–1277.
This paper investigates the physical layer security in a multibeam satellite communication system, where each legitimate user is surrounded by one eavesdropper. First of all, an optimization problem is formulated to maximize the sum of achievable secrecy rate, while satisfying the on-board satellite transmit power constraint. Then, two transmit beamforming(BF) schemes, namely, the zero-forcing (ZF) and the signal-to-leakage-and-noise ratio (SLNR) BF algorithms are proposed to obtain the BF weight vectors as well as power allocation coefficients. Finally, simulation results are provided to verify the validity of the two proposed methods and demonstrate that the SLNR BF algorithm outperforms the ZF BF algorithm.
Viet, H. N., Kwon, K. R., Kwon, S. K., Lee, E. J., Lee, S. H., Kim, C. Y..  2017.  Implementation of GPS signal simulation for drone security using Matlab/Simulink. 2017 IEEE XXIV International Conference on Electronics, Electrical Engineering and Computing (INTERCON). :1–4.
In this paper, a simulation model of digital intermediate frequency (IF) GPS signal is presented. This design is developed based on mathematical model representing the digitized IF GPS signal. In details, C/A code, navigation data and P code, and the noise models are configured some initial settings simultaneously. Simulation results show that the simulated signals share the same properties with real signals (e.g. C/A code correlation properties, and the spread spectrum). The simulated GPS IF signal data can work as input for various signal processing algorithm of GPS receivers, such as acquisition, tracking, carrier-to-noise ratio (C/No) estimation, and GPS spoofing signal generation. Particularly, the simulated GPS signal can conduct scenarios by adjust SNR values of the noise generator during simulation (e.g. signal outages, sudden changes of GPS signal power), which can be used as setup experiments of spoofing/jamming interference to UAVs for drone security applications.
2015-05-05
Aiyetoro, G., Takawira, F..  2014.  A Cross-layer Based Packet Scheduling Scheme for Multimedia Traffic in Satellite LTE Networks. New Technologies, Mobility and Security (NTMS), 2014 6th International Conference on. :1-6.

This paper proposes a new cross-layer based packet scheduling scheme for multimedia traffic in satellite Long Term Evolution (LTE) network which adopts MIMO technology. The Satellite LTE air interface will provide global coverage and hence complement its terrestrial counterpart in the provision of mobile services (especially multimedia services) to users across the globe. A dynamic packet scheduling scheme is very important towards actualizing an effective utilization of the limited available resources in satellite LTE networks without compromise to the Quality of Service (QoS) demands of multimedia traffic. Hence, the need for an effective packet scheduling algorithm cannot be overemphasized. The aim of this paper is to propose a new scheduling algorithm tagged Cross-layer Based Queue-Aware (CBQA) Scheduler that will provide a good trade-off among QoS, fairness and throughput. The newly proposed scheduler is compared to existing ones through simulations and various performance indices have been used. A land mobile dual-polarized GEO satellite system has been considered for this work.