Visible to the public Biblio

Filters: Keyword is sublinear regret  [Clear All Filters]
2021-01-11
Jiang, P., Liao, S..  2020.  Differential Privacy Online Learning Based on the Composition Theorem. 2020 IEEE 10th International Conference on Electronics Information and Emergency Communication (ICEIEC). :200–203.
Privacy protection is becoming more and more important in the era of big data. Differential privacy is a rigorous and provable privacy protection method that can protect privacy for a single piece of data. But existing differential privacy online learning methods have great limitations in the scope of application and accuracy. Aiming at this problem, we propose a more general and accurate algorithm, named DPOL-CT, for differential privacy online learning. We first distinguish the difference in differential privacy protection between offline learning and online learning. Then we prove that the DPOL-CT algorithm achieves (∊, δ)-differential privacy for online learning under the Gaussian, the Laplace and the Staircase mechanisms and enjoys a sublinear expected regret bound. We further discuss the trade-off between the differential privacy level and the regret bound. Theoretical analysis and experimental results show that the DPOL-CT algorithm has good performance guarantees.