Biblio
The developments made in IoT applications have made wearable devices a popular choice for collecting user data to monitor this information and provide intelligent service support. Since wearable devices are continuously collecting and transporting a user's sensitive data over the network, there exist increased security challenges. Moreover, wearable devices lack the computation capabilities in comparison to traditional short-range communication devices. In this paper, authors propounded a Yoking Proof based remote Authentication scheme for Cloud-aided Wearable devices (YPACW) which takes PUF and cryptographic functions and joins them to achieve mutual authentication between the wearable devices and smartphone via a cloud server, by performing the simultaneous verification of these devices, using the established yoking-proofs. Relative to Liu et al.'s scheme, YPACW provides better results with the reduction of communication and processing cost significantly.
In 2013, Biswas and Misic proposed a new privacy-preserving authentication scheme for WAVE-based vehicular ad hoc networks (VANETs), claiming that they used a variant of the Elliptic Curve Digital Signature Algorithm (ECDSA). However, our study has discovered that the authentication scheme proposed by them is vulnerable to a private key reveal attack. Any malicious receiving vehicle who receives a valid signature from a legal signing vehicle can gain access to the signing vehicle private key from the learned valid signature. Hence, the authentication scheme proposed by Biswas and Misic is insecure. We thus propose an improved version to overcome this weakness. The proposed improved scheme also supports identity revocation and trace. Based on this security property, the CA and a receiving entity (RSU or OBU) can check whether a received signature has been generated by a revoked vehicle. Security analysis is also conducted to evaluate the security strength of the proposed authentication scheme.