Visible to the public Biblio

Filters: Keyword is specific emitter identification  [Clear All Filters]
2022-09-09
Guo, Shaoying, Xu, Yanyun, Huang, Weiqing, Liu, Bo.  2021.  Specific Emitter Identification via Variational Mode Decomposition and Histogram of Oriented Gradient. 2021 28th International Conference on Telecommunications (ICT). :1—6.
Specific emitter identification (SEI) is a physical-layer-based approach for enhancing wireless communication network security. A well-done SEI method can be widely applied in identifying the individual wireless communication device. In this paper, we propose a novel specific emitter identification method based on variational mode decomposition and histogram of oriented gradient (VMD-HOG). The signal is decomposed into specific temporal modes via VMD and HOG features are obtained from the time-frequency spectrum of temporal modes. The performance of the proposed method is evaluated both in single hop and relaying scenarios and under three channels with the number of emitters varying. Results depict that our proposed method provides great identification performance for both simulated signals and realistic data of Zigbee devices and outperforms the two existing methods in identification accuracy and computational complexity.
2021-01-20
Shi, F., Chen, Z., Cheng, X..  2020.  Behavior Modeling and Individual Recognition of Sonar Transmitter for Secure Communication in UASNs. IEEE Access. 8:2447—2454.

It is necessary to improve the safety of the underwater acoustic sensor networks (UASNs) since it is mostly used in the military industry. Specific emitter identification is the process of identifying different transmitters based on the radio frequency fingerprint extracted from the received signal. The sonar transmitter is a typical low-frequency radiation source and is an important part of the UASNs. Class D power amplifier, a typical nonlinear amplifier, is usually used in sonar transmitters. The inherent nonlinearity of power amplifiers provides fingerprint features that can be distinguished without transmitters for specific emitter recognition. First, the nonlinearity of the sonar transmitter is studied in-depth, and the nonlinearity of the power amplifier is modeled and its nonlinearity characteristics are analyzed. After obtaining the nonlinear model of an amplifier, a similar amplifier in practical application is obtained by changing its model parameters as the research object. The output signals are collected by giving the same input of different models, and, then, the output signals are extracted and classified. In this paper, the memory polynomial model is used to model the amplifier. The power spectrum features of the output signals are extracted as fingerprint features. Then, the dimensionality of the high-dimensional features is reduced. Finally, the classifier is used to recognize the amplifier. The experimental results show that the individual sonar transmitter can be well identified by using the nonlinear characteristics of the signal. By this way, this method can enhance the communication safety of the UASNs.