Visible to the public Biblio

Filters: Keyword is ResNet  [Clear All Filters]
2023-06-22
Jamil, Huma, Liu, Yajing, Cole, Christina, Blanchard, Nathaniel, King, Emily J., Kirby, Michael, Peterson, Christopher.  2022.  Dual Graphs of Polyhedral Decompositions for the Detection of Adversarial Attacks. 2022 IEEE International Conference on Big Data (Big Data). :2913–2921.
Previous work has shown that a neural network with the rectified linear unit (ReLU) activation function leads to a convex polyhedral decomposition of the input space. These decompositions can be represented by a dual graph with vertices corresponding to polyhedra and edges corresponding to polyhedra sharing a facet, which is a subgraph of a Hamming graph. This paper illustrates how one can utilize the dual graph to detect and analyze adversarial attacks in the context of digital images. When an image passes through a network containing ReLU nodes, the firing or non-firing at a node can be encoded as a bit (1 for ReLU activation, 0 for ReLU non-activation). The sequence of all bit activations identifies the image with a bit vector, which identifies it with a polyhedron in the decomposition and, in turn, identifies it with a vertex in the dual graph. We identify ReLU bits that are discriminators between non-adversarial and adversarial images and examine how well collections of these discriminators can ensemble vote to build an adversarial image detector. Specifically, we examine the similarities and differences of ReLU bit vectors for adversarial images, and their non-adversarial counterparts, using a pre-trained ResNet-50 architecture. While this paper focuses on adversarial digital images, ResNet-50 architecture, and the ReLU activation function, our methods extend to other network architectures, activation functions, and types of datasets.
2022-02-07
Abdelmonem, Salma, Seddik, Shahd, El-Sayed, Rania, Kaseb, Ahmed S..  2021.  Enhancing Image-Based Malware Classification Using Semi-Supervised Learning. 2021 3rd Novel Intelligent and Leading Emerging Sciences Conference (NILES). :125–128.
Malicious software (malware) creators are constantly mutating malware files in order to avoid detection, resulting in hundreds of millions of new malware every year. Therefore, most malware files are unlabeled due to the time and cost needed to label them manually. This makes it very challenging to perform malware detection, i.e., deciding whether a file is malware or not, and malware classification, i.e., determining the family of the malware. Most solutions use supervised learning (e.g., ResNet and VGG) whose accuracy degrades significantly with the lack of abundance of labeled data. To solve this problem, this paper proposes a semi-supervised learning model for image-based malware classification. In this model, malware files are represented as grayscale images, and semi-supervised learning is carefully selected to handle the plethora of unlabeled data. Our proposed model is an enhanced version of the ∏-model, which makes it more accurate and consistent. Experiments show that our proposed model outperforms the original ∏-model by 4% in accuracy and three other supervised models by 6% in accuracy especially when the ratio of labeled samples is as low as 20%.
2021-05-13
Gomathi, S., Parmar, Nilesh, Devi, Jyoti, Patel, Namrata.  2020.  Detecting Malware Attack on Cloud using Deep Learning Vector Quantization. 2020 12th International Conference on Computational Intelligence and Communication Networks (CICN). :356—361.

In recent times cloud services are used widely and due to which there are so many attacks on the cloud devices. One of the major attacks is DDos (distributed denial-of-service) -attack which mainly targeted the Memcached which is a caching system developed for speeding the websites and the networks through Memcached's database. The DDoS attack tries to destroy the database by creating a flood of internet traffic at the targeted server end. Attackers send the spoofing applications to the vulnerable UDP Memcached server which even manipulate the legitimate identity of the sender. In this work, we have proposed a vector quantization approach based on a supervised deep learning approach to detect the Memcached attack performed by the use of malicious firmware on different types of Cloud attached devices. This vector quantization approach detects the DDoas attack performed by malicious firmware on the different types of cloud devices and this also classifies the applications which are vulnerable to attack based on cloud-The Hackbeased services. The result computed during the testing shows the 98.2 % as legally positive and 0.034% as falsely negative.

2021-01-28
Romashchenko, V., Brutscheck, M., Chmielewski, I..  2020.  Organisation and Implementation of ResNet Face Recognition Architectures in the Environment of Zigbee-based Data Transmission Protocol. 2020 Fourth International Conference on Multimedia Computing, Networking and Applications (MCNA). :25—30.

This paper describes a realisation of a ResNet face recognition method through Zigbee-based wireless protocol. The system uses a CC2530 Zigbee-based radio frequency chip with connected VC0706 camera on it. The Arduino Nano had been used for organisation of data compression and effective division of Zigbee packets. The proposed solution also simplifies a data transmission within a strict bandwidth of Zigbee protocol and reliable packet forwarding in case of frequency distortion. The following investigation model uses Raspberry Pi 3 with connected Zigbee End Device (ZED) for successful receiving of important images and acceleration of deep learning interfaces. The model is integrated into a smart security system based on Zigbee modules, MySQL database, Android application and works in the background by using daemons procedures. To protect data, all wireless connections had been encrypted by the 128-bit Advanced Encryption Standard (AES-128) algorithm. Experimental results show a possibility to implement complex systems under restricted requirements of available transmission protocols.