Biblio
In this paper we examine the use of covert channels based on CPU load in order to achieve persistent user identification through browser sessions. In particular, we demonstrate that an HTML5 video, a GIF image, or CSS animations on a webpage can be used to force the CPU to produce a sequence of distinct load levels, even without JavaScript or any client-side code. These load levels can be then captured either by another browsing session, running on the same or a different browser in parallel to the browsing session we want to identify, or by a malicious app installed on the device. To get a good estimation of the CPU load caused by the target session, the receiver can observe system statistics about CPU activity (app), or constantly measure time it takes to execute a known code segment (app and browser). Furthermore, for mobile devices we propose a sensor-based approach to estimate the CPU load, based on exploiting disturbances of the magnetometer sensor data caused by the high CPU activity. Captured loads can be decoded and translated into an identifying bit string, which is transmitted back to the attacker. Due to the way loads are produced, these methods are applicable even in highly restrictive browsers, such as the Tor Browser, and run unnoticeably to the end user. Therefore, unlike existing ways of web tracking, our methods circumvent most of the existing countermeasures, as they store the identifying information outside the browsing session being targeted. Finally, we also thoroughly evaluate and assess each presented method of generating and receiving the signal, and provide an overview of potential countermeasures.
Direct access to the system's resources such as the GPU, persistent storage and networking has enabled in-browser crypto-mining. Thus, there has been a massive response by rogue actors who abuse browsers for mining without the user's consent. This trend has grown steadily for the last months until this practice, i.e., CryptoJacking, has been acknowledged as the number one security threat by several antivirus companies. Considering this, and the fact that these attacks do not behave as JavaScript malware or other Web attacks, we propose and evaluate several approaches to detect in-browser mining. To this end, we collect information from the top 330.500 Alexa sites. Mainly, we used real-life browsers to visit sites while monitoring resourcerelated API calls and the browser's resource consumption, e.g., CPU. Our detection mechanisms are based on dynamic monitoring, so they are resistant to JavaScript obfuscation. Furthermore, our detection techniques can generalize well and classify previously unseen samples with up to 99.99% precision and recall for the benign class and up to 96% precision and recall for the mining class. These results demonstrate the applicability of detection mechanisms as a server-side approach, e.g., to support the enhancement of existing blacklists. Last but not least, we evaluated the feasibility of deploying prototypical implementations of some detection mechanisms directly on the browser. Specifically, we measured the impact of in-browser API monitoring on page-loading time and performed micro-benchmarks for the execution of some classifiers directly within the browser. In this regard, we ascertain that, even though there are engineering challenges to overcome, it is feasible and bene!cial for users to bring the mining detection to the browser.
Recently, digital transactions in real estate, insurance, etc. have become popular, and researchers are actively studying digital signatures as a method for distinguishing individuals. However, existing digital signature systems have different methods for making signatures depending on the platform and device, and because they are used on platforms owned by corporations, they have the disadvantage of being highly platform-dependent and having low software extensibility. Therefore, in this paper we have analyzed existing digital signature systems and designed a heterogeneous integrated digital signature system which has per-user contract management features and can guarantee platform independence and increase the ease of software extension and maintenance by using a browser environment.
Recent years, HTML5 is widely adopted in popular browsers. Unfortunately, as a new Web standard, HTML5 may expand the Cross Site Scripting (XSS) attack surface as well as improve the interactivity of the page. In this paper, we identified 14 XSS attack vectors related to HTML5 by a systematic analysis about new tags and attributes. Based on these vectors, a XSS test vector repository is constructed and a dynamic XSS vulnerability detection tool focusing on Webmail systems is implemented. By applying the tool to some popular Webmail systems, seven exploitable XSS vulnerabilities are found. The evaluation result shows that our tool can efficiently detect XSS vulnerabilities introduced by HTML5.