Biblio
Fingerprinting the malware by its behavioural signature has been an attractive approach for malware detection due to the homogeneity of dynamic execution patterns across different variants of similar families. Although previous researches show reasonably good performance in dynamic detection using machine learning techniques on a large corpus of training set, decisions must be undertaken based upon a scarce number of observable samples in many practical defence scenarios. This paper demonstrates the effectiveness of generative adversarial autoencoder for dynamic malware detection under outbreak situations where in most cases a single sample is available for training the machine learning algorithm to detect similar samples that are in the wild.
This paper studies the principle of vulnerability generation and mechanism of cross-site scripting attack, designs a dynamic cross-site scripting vulnerabilities detection technique based on existing theories of black box vulnerabilities detection. The dynamic detection process contains five steps: crawler, feature construct, attacks simulation, results detection and report generation. Crawling strategy in crawler module and constructing algorithm in feature construct module are key points of this detection process. Finally, according to the detection technique proposed in this paper, a detection tool is accomplished in Linux using python language to detect web applications. Experiments were launched to verify the results and compare with the test results of other existing tools, analyze the usability, advantages and disadvantages of the detection method above, confirm the feasibility of applying dynamic detection technique to cross-site scripting vulnerabilities detection.
Recent years, HTML5 is widely adopted in popular browsers. Unfortunately, as a new Web standard, HTML5 may expand the Cross Site Scripting (XSS) attack surface as well as improve the interactivity of the page. In this paper, we identified 14 XSS attack vectors related to HTML5 by a systematic analysis about new tags and attributes. Based on these vectors, a XSS test vector repository is constructed and a dynamic XSS vulnerability detection tool focusing on Webmail systems is implemented. By applying the tool to some popular Webmail systems, seven exploitable XSS vulnerabilities are found. The evaluation result shows that our tool can efficiently detect XSS vulnerabilities introduced by HTML5.