Visible to the public Biblio

Found 2348 results

Filters: Keyword is privacy  [Clear All Filters]
2020-04-24
Yu, Jiangfan, Zhang, Li.  2019.  Reconfigurable Colloidal Microrobotic Swarm for Targeted Delivery. 2019 16th International Conference on Ubiquitous Robots (UR). :615—616.

Untethered microrobots actuated by external magnetic fields have drawn extensive attention recently, due to their potential advantages in real-time tracking and targeted delivery in vivo. To control a swarm of microrobots with external fields, however, is still one of the major challenges in this field. In this work, we present new methods to generate ribbon-like and vortex-like microrobotic swarms using oscillating and rotating magnetic fields, respectively. Paramagnetic nanoparticles with a diameter of 400 nm serve as the agents. These two types of swarms exhibits out-of-equilibrium structure, in which the nanoparticles perform synchronised motions. By tuning the magnetic fields, the swarming patterns can be reversibly transformed. Moreover, by increasing the pitch angle of the applied fields, the swarms are capable of performing navigated locomotion with a controlled velocity. This work sheds light on a better understanding for microrobotic swarm behaviours and paves the way for potential biomedical applications.

Bellec, Q., le Claire, J.C., Benkhoris, M.F., Coulibaly, P..  2019.  Investigation of time delay effects on the current in a power converter regulated by Phase-Shift Self-Oscillating Current Controller. 2019 21st European Conference on Power Electronics and Applications (EPE '19 ECCE Europe). :P.1–P.10.

This paper deals with effects of current sensor bandwidth and time delays in a system controlled by a Phase-Shift Self-Oscillating Current Controller (PSSOCC). The robustness of this current controller has been proved in former works showing its good performances in a large range of applications including AC/DC and DC/AC converters, power factor correction, active filters, isolation amplifiers and motor control. As switching frequencies can be upper than 30kHz, time delays and bandwidth limitations cannot be neglected in comparison with former works on this robust current controller. Thus, several models are proposed in this paper to analyze system behaviours. Those models permit to find analytical expressions binding maximum oscillation frequency with time delay and/or additional filter parameters. Through current spectrums analysis, quality of analytical expressions is proved for each model presented in this work. An experimental approach shows that every element of the electronic board having a low-pass effect or delaying command signals need to be included in the model in order to have a perfect match between calculations, simulations and practical results.

de Almeida Arantes, Daniel, Borges da Silva, Luiz Eduardo, Teixeira, Carlos Eduardo, Campos, Mateus Mendes, Lambert-Torres, Germano, Bonaldi, Erik Leandro, de Lacerda de Oliveira, Levy Ely, da Costa, Germando Araújo.  2019.  Relative Permittivity Meter Using a Capacitive Sensor and an Oscillating Current Source. IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society. 1:806—811.

The relative permittivity (also known as dielectric constant) is one of the physical properties that characterize a substance. The measurement of its magnitude can be useful in the analysis of several fluids, playing an important role in many industrial processes. This paper presents a method for measuring the relative permittivity of fluids, with the possibility of real-time monitoring. The method comprises the immersion of a capacitive sensor inside a tank or duct, in order to have the inspected substance as its dielectric. An electronic circuit is responsible for exciting this sensor, which will have its capacitance measured through a quick analysis of two analog signals outputted by the circuit. The developed capacitance meter presents a novel topology derived from the well-known Howland current source. One of its main advantages is the capacitance-selective behavior, which allows the system to overcome the effects of parasitic resistive and inductive elements on its readings. In addition to an adjustable current output that suits different impedance magnitudes, it exhibits a steady oscillating behavior, thus allowing continuous operation without any form of external control. This paper presents experimental results obtained from the proposed system and compares them to measurements made with proven and calibrated equipment. Two initial capacitance measurements performed with the system for evaluating the sensor's characteristics exhibited relative errors of approximately 0.07% and 0.53% in comparison to an accurate workbench LCR meter.

Bettouche, Mohamed Amine, Le Claire, Jean-Claude, Ghedamsi, Kaci, Aouzellag, Djamal, Ahmed, Mourad Ait, Benkhoris, Mohamed Fouad.  2019.  A behavior analysis of Permanent Magnet Synchronous Generator - Vienna rectifier set for marine current energy conversion. 2019 IEEE 2nd International Conference on Renewable Energy and Power Engineering (REPE). :254—259.

This article is dedicated to the study of an innovative architecture for the conversion of renewable marine energy into electrical energy. It consists of a Permanent Magnet Synchronous Generator (PMSG) combined with a three-phase Vienna rectifier. This last converter is not reversible but has the advantage of minimizing the number of active switches. This improves the operational reliability of the chain, which is necessary in the context of marine energy exploitation where access to the installations is not easy. The study focuses on the behavior analysis of electrical chain conversion, and the study of phase and neutral current according to the conduction’s states of the switches of the Vienna rectifier is being investigated. Despite the high non-linearity of this architecture, this control is made possible through to the dynamic performance and control of the maximum switching frequency of the self-oscillating controller called the Phase-Shift Self-Oscillating Current Controller (PSSOCC).

de Rooij, Sjors, Laguna, Antonio Jarquin.  2019.  Modelling of submerged oscillating water columns with mass transfer for wave energy extraction. 2019 Offshore Energy and Storage Summit (OSES). :1—9.
Oscillating-water-column (OWC) devices are a very important type of wave energy converters which have been extensively studied over the years. Although most designs of OWC are based on floating or fixed structures exposed above the surface level, little is known from completely submerged systems which can benefit from reduced environmental loads and a simplified structural design. The submerged type of resonant duct consists of two OWCs separated by a weir and air chamber instead of the commonly used single column. Under conditions close to resonance, water flows from the first column into the second one, resulting in a positive flow through the system from which energy can be extracted by a hydro turbine. While existing work has looked at the study of the behaviour of one OWC, this paper addresses the dynamic interaction between the two water columns including the mass transfer mechanism as well as the associated change of momentum. A numerical time-domain model is used to obtain some initial results on the performance and response of the system for different design parameters. The model is derived from 1D conservation of mass and momentum equations, including hydrodynamic effects, adiabatic air compressibility and turbine induced damping. Preliminary results indicate that the mass transfer has an important effect both on the resonance amplification and on the phase between the motion of the two columns. Simulation results are presented for the system performance over several weir heights and regular wave conditions. Further work will continue in design optimization and experimental validation of the proposed model.
2020-04-20
Lefebvre, Dimitri, Hadjicostis, Christoforos N..  2019.  Trajectory-observers of timed stochastic discrete event systems: Applications to privacy analysis. 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT). :1078–1083.
Various aspects of security and privacy in many application domains can be assessed based on proper analysis of successive measurements that are collected on a given system. This work is devoted to such issues in the context of timed stochastic Petri net models. We assume that certain events and part of the marking trajectories are observable to adversaries who aim to determine when the system is performing secret operations, such as time intervals during which the system is executing certain critical sequences of events (as captured, for instance, in language-based opacity formulations). The combined use of the k-step trajectory-observer and the Markov model of the stochastic Petri net leads to probabilistic indicators helpful for evaluating language-based opacity of the given system, related timing aspects, and possible strategies to improve them.
Takbiri, Nazanin, Shao, Xiaozhe, Gao, Lixin, Pishro-Nik, Hossein.  2019.  Improving Privacy in Graphs Through Node Addition. 2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton). :487–494.

The rapid growth of computer systems which generate graph data necessitates employing privacy-preserving mechanisms to protect users' identity. Since structure-based de-anonymization attacks can reveal users' identity's even when the graph is simply anonymized by employing naïve ID removal, recently, k- anonymity is proposed to secure users' privacy against the structure-based attack. Most of the work ensured graph privacy using fake edges, however, in some applications, edge addition or deletion might cause a significant change to the key property of the graph. Motivated by this fact, in this paper, we introduce a novel method which ensures privacy by adding fake nodes to the graph. First, we present a novel model which provides k- anonymity against one of the strongest attacks: seed-based attack. In this attack, the adversary knows the partial mapping between the main graph and the graph which is generated using the privacy-preserving mechanisms. We show that even if the adversary knows the mapping of all of the nodes except one, the last node can still have k- anonymity privacy. Then, we turn our attention to the privacy of the graphs generated by inter-domain routing against degree attacks in which the degree sequence of the graph is known to the adversary. To ensure the privacy of networks against this attack, we propose a novel method which tries to add fake nodes in a way that the degree of all nodes have the same expected value.

Djoudi, Aghiles, Pujolle, Guy.  2019.  Social Privacy Score Through Vulnerability Contagion Process. 2019 Fifth Conference on Mobile and Secure Services (MobiSecServ). :1–6.
The exponential usage of messaging services for communication raises many questions in privacy fields. Privacy issues in such services strongly depend on the graph-theoretical properties of users' interactions representing the real friendships between users. One of the most important issues of privacy is that users may disclose information of other users beyond the scope of the interaction, without realizing that such information could be aggregated to reveal sensitive information. Determining vulnerable interactions from non-vulnerable ones is difficult due to the lack of awareness mechanisms. To address this problem, we analyze the topological relationships with the level of trust between users to notify each of them about their vulnerable social interactions. Particularly, we analyze the impact of trusting vulnerable friends in infecting other users' privacy concerns by modeling a new vulnerability contagion process. Simulation results show that over-trusting vulnerable users speeds the vulnerability diffusion process through the network. Furthermore, vulnerable users with high reputation level lead to a high convergence level of infection, this means that the vulnerability contagion process infects the biggest number of users when vulnerable users get a high level of trust from their interlocutors. This work contributes to the development of privacy awareness framework that can alert users of the potential private information leakages in their communications.
Khan, Muhammad Imran, Foley, Simon N., O'Sullivan, Barry.  2019.  PriDe: A Quantitative Measure of Privacy-Loss in Interactive Querying Settings. 2019 10th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1–5.
This paper presents, PriDe, a model to measure the deviation of an analyst's (user) querying behaviour from normal querying behaviour. The deviation is measured in terms of privacy, that is to say, how much of the privacy loss has incurred due to this shift in querying behaviour. The shift is represented in terms of a score - a privacy-loss score, the higher the score the more the loss in privacy. Querying behaviour of analysts are modelled using n-grams of SQL query and subsequently, behavioural profiles are constructed. Profiles are then compared in terms of privacy resulting in a quantified score indicating the privacy loss.
Xiao, Tianrui, Khisti, Ashish.  2019.  Maximal Information Leakage based Privacy Preserving Data Disclosure Mechanisms. 2019 16th Canadian Workshop on Information Theory (CWIT). :1–6.
It is often necessary to disclose training data to the public domain, while protecting privacy of certain sensitive labels. We use information theoretic measures to develop such privacy preserving data disclosure mechanisms. Our mechanism involves perturbing the data vectors to strike a balance in the privacy-utility trade-off. We use maximal information leakage between the output data vector and the confidential label as our privacy metric. We first study the theoretical Bernoulli-Gaussian model and study the privacy-utility trade-off when only the mean of the Gaussian distributions can be perturbed. We show that the optimal solution is the same as the case when the utility is measured using probability of error at the adversary. We then consider an application of this framework to a data driven setting and provide an empirical approximation to the Sibson mutual information. By performing experiments on the MNIST and FERG data sets, we show that our proposed framework achieves equivalent or better privacy than previous methods based on mutual information.
Yuan, Jing, Ou, Yuyi, Gu, Guosheng.  2019.  An Improved Privacy Protection Method Based on k-degree Anonymity in Social Network. 2019 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). :416–420.

To preserve the privacy of social networks, most existing methods are applied to satisfy different anonymity models, but there are some serious problems such as huge large information losses and great structural modifications of original social network. Therefore, an improved privacy protection method called k-subgraph is proposed, which is based on k-degree anonymous graph derived from k-anonymity to keep the network structure stable. The method firstly divides network nodes into several clusters by label propagation algorithm, and then reconstructs the sub-graph by means of moving edges to achieve k-degree anonymity. Experimental results show that our k-subgraph method can not only effectively improve the defense capability against malicious attacks based on node degrees, but also maintain stability of network structure. In addition, the cost of information losses due to anonymity is minimized ideally.

Zhang, Xue, Yan, Wei Qi.  2018.  Comparative Evaluations of Privacy on Digital Images. 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). :1–6.
Privacy preservation on social networks is nowadays a societal issue. In this paper, our contributions are to establish such a model for privacy preservation. We use differential privacy for personal privacy analysis and measurement. Our conclusion is that privacy could be measured and preserved if the corresponding approaches could be taken.
Zhang, Xue, Yan, Wei Qi.  2018.  Comparative Evaluations of Privacy on Digital Images. 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). :1–6.
Privacy preservation on social networks is nowadays a societal issue. In this paper, our contributions are to establish such a model for privacy preservation. We use differential privacy for personal privacy analysis and measurement. Our conclusion is that privacy could be measured and preserved if the corresponding approaches could be taken.
To, Hien, Shahabi, Cyrus, Xiong, Li.  2018.  Privacy-Preserving Online Task Assignment in Spatial Crowdsourcing with Untrusted Server. 2018 IEEE 34th International Conference on Data Engineering (ICDE). :833–844.
With spatial crowdsourcing (SC), requesters outsource their spatiotemporal tasks (tasks associated with location and time) to a set of workers, who will perform the tasks by physically traveling to the tasks' locations. However, current solutions require the locations of the workers and/or the tasks to be disclosed to untrusted parties (SC server) for effective assignments of tasks to workers. In this paper we propose a framework for assigning tasks to workers in an online manner without compromising the location privacy of workers and tasks. We perturb the locations of both tasks and workers based on geo-indistinguishability and then devise techniques to quantify the probability of reachability between a task and a worker, given their perturbed locations. We investigate both analytical and empirical models for quantifying the worker-task pair reachability and propose task assignment strategies that strike a balance among various metrics such as the number of completed tasks, worker travel distance and system overhead. Extensive experiments on real-world datasets show that our proposed techniques result in minimal disclosure of task locations and no disclosure of worker locations without significantly sacrificing the total number of assigned tasks.
To, Hien, Shahabi, Cyrus, Xiong, Li.  2018.  Privacy-Preserving Online Task Assignment in Spatial Crowdsourcing with Untrusted Server. 2018 IEEE 34th International Conference on Data Engineering (ICDE). :833–844.
With spatial crowdsourcing (SC), requesters outsource their spatiotemporal tasks (tasks associated with location and time) to a set of workers, who will perform the tasks by physically traveling to the tasks' locations. However, current solutions require the locations of the workers and/or the tasks to be disclosed to untrusted parties (SC server) for effective assignments of tasks to workers. In this paper we propose a framework for assigning tasks to workers in an online manner without compromising the location privacy of workers and tasks. We perturb the locations of both tasks and workers based on geo-indistinguishability and then devise techniques to quantify the probability of reachability between a task and a worker, given their perturbed locations. We investigate both analytical and empirical models for quantifying the worker-task pair reachability and propose task assignment strategies that strike a balance among various metrics such as the number of completed tasks, worker travel distance and system overhead. Extensive experiments on real-world datasets show that our proposed techniques result in minimal disclosure of task locations and no disclosure of worker locations without significantly sacrificing the total number of assigned tasks.
Wang, Chong Xiao, Song, Yang, Tay, Wee Peng.  2018.  PRESERVING PARAMETER PRIVACY IN SENSOR NETWORKS. 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP). :1316–1320.
We consider the problem of preserving the privacy of a set of private parameters while allowing inference of a set of public parameters based on observations from sensors in a network. We assume that the public and private parameters are correlated with the sensor observations via a linear model. We define the utility loss and privacy gain functions based on the Cramér-Rao lower bounds for estimating the public and private parameters, respectively. Our goal is to minimize the utility loss while ensuring that the privacy gain is no less than a predefined privacy gain threshold, by allowing each sensor to perturb its own observation before sending it to the fusion center. We propose methods to determine the amount of noise each sensor needs to add to its observation under the cases where prior information is available or unavailable.
Wang, Chong Xiao, Song, Yang, Tay, Wee Peng.  2018.  PRESERVING PARAMETER PRIVACY IN SENSOR NETWORKS. 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP). :1316–1320.
We consider the problem of preserving the privacy of a set of private parameters while allowing inference of a set of public parameters based on observations from sensors in a network. We assume that the public and private parameters are correlated with the sensor observations via a linear model. We define the utility loss and privacy gain functions based on the Cramér-Rao lower bounds for estimating the public and private parameters, respectively. Our goal is to minimize the utility loss while ensuring that the privacy gain is no less than a predefined privacy gain threshold, by allowing each sensor to perturb its own observation before sending it to the fusion center. We propose methods to determine the amount of noise each sensor needs to add to its observation under the cases where prior information is available or unavailable.
Liu, Kai-Cheng, Kuo, Chuan-Wei, Liao, Wen-Chiuan, Wang, Pang-Chieh.  2018.  Optimized Data de-Identification Using Multidimensional k-Anonymity. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :1610–1614.
In the globalized knowledge economy, big data analytics have been widely applied in diverse areas. A critical issue in big data analysis on personal information is the possible leak of personal privacy. Therefore, it is necessary to have an anonymization-based de-identification method to avoid undesirable privacy leak. Such method can prevent published data form being traced back to personal privacy. Prior empirical researches have provided approaches to reduce privacy leak risk, e.g. Maximum Distance to Average Vector (MDAV), Condensation Approach and Differential Privacy. However, previous methods inevitably generate synthetic data of different sizes and is thus unsuitable for general use. To satisfy the need of general use, k-anonymity can be chosen as a privacy protection mechanism in the de-identification process to ensure the data not to be distorted, because k-anonymity is strong in both protecting privacy and preserving data authenticity. Accordingly, this study proposes an optimized multidimensional method for anonymizing data based on both the priority weight-adjusted method and the mean difference recommending tree method (MDR tree method). The results of this study reveal that this new method generate more reliable anonymous data and reduce the information loss rate.
Liu, Kai-Cheng, Kuo, Chuan-Wei, Liao, Wen-Chiuan, Wang, Pang-Chieh.  2018.  Optimized Data de-Identification Using Multidimensional k-Anonymity. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :1610–1614.
In the globalized knowledge economy, big data analytics have been widely applied in diverse areas. A critical issue in big data analysis on personal information is the possible leak of personal privacy. Therefore, it is necessary to have an anonymization-based de-identification method to avoid undesirable privacy leak. Such method can prevent published data form being traced back to personal privacy. Prior empirical researches have provided approaches to reduce privacy leak risk, e.g. Maximum Distance to Average Vector (MDAV), Condensation Approach and Differential Privacy. However, previous methods inevitably generate synthetic data of different sizes and is thus unsuitable for general use. To satisfy the need of general use, k-anonymity can be chosen as a privacy protection mechanism in the de-identification process to ensure the data not to be distorted, because k-anonymity is strong in both protecting privacy and preserving data authenticity. Accordingly, this study proposes an optimized multidimensional method for anonymizing data based on both the priority weight-adjusted method and the mean difference recommending tree method (MDR tree method). The results of this study reveal that this new method generate more reliable anonymous data and reduce the information loss rate.
Sule, Rupali, Chaudhari, Sangita.  2018.  Preserving Location Privacy in Geosocial Applications using Error Based Transformation. 2018 International Conference on Smart City and Emerging Technology (ICSCET). :1–4.
Geo-social applications deal with constantly sharing user's current geographic information in terms of location (Latitude and Longitude). Such application can be used by many people to get information about their surrounding with the help of their friend's locations and their recommendations. But without any privacy protection, these systems can be easily misused by tracking the users. We are proposing Error Based Transformation (ERB) approach for location transformation which provides significantly improved location privacy without adding uncertainty in to query results or relying on strong assumptions about server security. The key insight is to apply secure user-specific, distance-preserving coordinate transformations to all location data shared with the server. Only the friends of a user can get exact co-ordinates by applying inverse transformation with secret key shared with them. Servers can evaluate all location queries correctly on transformed data. ERB privacy mechanism guarantee that servers are unable to see or infer actual location data from the transformed data. ERB privacy mechanism is successful against a powerful adversary model where prototype measurements used to show that it provides with very little performance overhead making it suitable for today's mobile device.
Sule, Rupali, Chaudhari, Sangita.  2018.  Preserving Location Privacy in Geosocial Applications using Error Based Transformation. 2018 International Conference on Smart City and Emerging Technology (ICSCET). :1–4.
Geo-social applications deal with constantly sharing user's current geographic information in terms of location (Latitude and Longitude). Such application can be used by many people to get information about their surrounding with the help of their friend's locations and their recommendations. But without any privacy protection, these systems can be easily misused by tracking the users. We are proposing Error Based Transformation (ERB) approach for location transformation which provides significantly improved location privacy without adding uncertainty in to query results or relying on strong assumptions about server security. The key insight is to apply secure user-specific, distance-preserving coordinate transformations to all location data shared with the server. Only the friends of a user can get exact co-ordinates by applying inverse transformation with secret key shared with them. Servers can evaluate all location queries correctly on transformed data. ERB privacy mechanism guarantee that servers are unable to see or infer actual location data from the transformed data. ERB privacy mechanism is successful against a powerful adversary model where prototype measurements used to show that it provides with very little performance overhead making it suitable for today's mobile device.
Lim, Yeon-sup, Srivatsa, Mudhakar, Chakraborty, Supriyo, Taylor, Ian.  2018.  Learning Light-Weight Edge-Deployable Privacy Models. 2018 IEEE International Conference on Big Data (Big Data). :1290–1295.
Privacy becomes one of the important issues in data-driven applications. The advent of non-PC devices such as Internet-of-Things (IoT) devices for data-driven applications leads to needs for light-weight data anonymization. In this paper, we develop an anonymization framework that expedites model learning in parallel and generates deployable models for devices with low computing capability. We evaluate our framework with various settings such as different data schema and characteristics. Our results exhibit that our framework learns anonymization models up to 16 times faster than a sequential anonymization approach and that it preserves enough information in anonymized data for data-driven applications.
Lim, Yeon-sup, Srivatsa, Mudhakar, Chakraborty, Supriyo, Taylor, Ian.  2018.  Learning Light-Weight Edge-Deployable Privacy Models. 2018 IEEE International Conference on Big Data (Big Data). :1290–1295.
Privacy becomes one of the important issues in data-driven applications. The advent of non-PC devices such as Internet-of-Things (IoT) devices for data-driven applications leads to needs for light-weight data anonymization. In this paper, we develop an anonymization framework that expedites model learning in parallel and generates deployable models for devices with low computing capability. We evaluate our framework with various settings such as different data schema and characteristics. Our results exhibit that our framework learns anonymization models up to 16 times faster than a sequential anonymization approach and that it preserves enough information in anonymized data for data-driven applications.
Raber, Frederic, Krüger, Antonio.  2018.  Deriving Privacy Settings for Location Sharing: Are Context Factors Always the Best Choice? 2018 IEEE Symposium on Privacy-Aware Computing (PAC). :86–94.
Research has observed context factors like occasion and time as influential factors for predicting whether or not to share a location with online friends. In other domains like social networks, personality was also found to play an important role. Furthermore, users are seeking a fine-grained disclosement policy that also allows them to display an obfuscated location, like the center of the current city, to some of their friends. In this paper, we observe which context factors and personality measures can be used to predict the correct privacy level out of seven privacy levels, which include obfuscation levels like center of the street or current city. Our results show that a prediction is possible with a precision 20% better than a constant value. We will give design indications to determine which context factors should be recorded, and how much the precision can be increased if personality and privacy measures are recorded using either a questionnaire or automated text analysis.
Raber, Frederic, Krüger, Antonio.  2018.  Deriving Privacy Settings for Location Sharing: Are Context Factors Always the Best Choice? 2018 IEEE Symposium on Privacy-Aware Computing (PAC). :86–94.
Research has observed context factors like occasion and time as influential factors for predicting whether or not to share a location with online friends. In other domains like social networks, personality was also found to play an important role. Furthermore, users are seeking a fine-grained disclosement policy that also allows them to display an obfuscated location, like the center of the current city, to some of their friends. In this paper, we observe which context factors and personality measures can be used to predict the correct privacy level out of seven privacy levels, which include obfuscation levels like center of the street or current city. Our results show that a prediction is possible with a precision 20% better than a constant value. We will give design indications to determine which context factors should be recorded, and how much the precision can be increased if personality and privacy measures are recorded using either a questionnaire or automated text analysis.