Visible to the public Biblio

Filters: Keyword is false positive rates  [Clear All Filters]
2019-08-05
Ahmad, F., Adnane, A., KURUGOLLU, F., Hussain, R..  2019.  A Comparative Analysis of Trust Models for Safety Applications in IoT-Enabled Vehicular Networks. 2019 Wireless Days (WD). :1-8.
Vehicular Ad-hoc NETwork (VANET) is a vital transportation technology that facilitates the vehicles to share sensitive information (such as steep-curve warnings and black ice on the road) with each other and with the surrounding infrastructure in real-time to avoid accidents and enable comfortable driving experience.To achieve these goals, VANET requires a secure environment for authentic, reliable and trusted information dissemination among the network entities. However, VANET is prone to different attacks resulting in the dissemination of compromised/false information among network nodes. One way to manage a secure and trusted network is to introduce trust among the vehicular nodes. To this end, various Trust Models (TMs) are developed for VANET and can be broadly categorized into three classes, Entity-oriented Trust Models (ETM), Data oriented Trust Models (DTM) and Hybrid Trust Models (HTM). These TMs evaluate trust based on the received information (data), the vehicle (entity) or both through different mechanisms. In this paper, we present a comparative study of the three TMs. Furthermore, we evaluate these TMs against the different trust, security and quality-of-service related benchmarks. Simulation results revealed that all these TMs have deficiencies in terms of end-to-end delays, event detection probabilities and false positive rates. This study can be used as a guideline for researchers to design new efficient and effective TMs for VANET.
2015-05-05
Coelho Martins da Fonseca, J.C., Amorim Vieira, M.P..  2014.  A Practical Experience on the Impact of Plugins in Web Security. Reliable Distributed Systems (SRDS), 2014 IEEE 33rd International Symposium on. :21-30.

In an attempt to support customization, many web applications allow the integration of third-party server-side plugins that offer diverse functionality, but also open an additional door for security vulnerabilities. In this paper we study the use of static code analysis tools to detect vulnerabilities in the plugins of the web application. The goal is twofold: 1) to study the effectiveness of static analysis on the detection of web application plugin vulnerabilities, and 2) to understand the potential impact of those plugins in the security of the core web application. We use two static code analyzers to evaluate a large number of plugins for a widely used Content Manage-ment System. Results show that many plugins that are current-ly deployed worldwide have dangerous Cross Site Scripting and SQL Injection vulnerabilities that can be easily exploited, and that even widely used static analysis tools may present disappointing vulnerability coverage and false positive rates.