Visible to the public Biblio

Filters: Keyword is transition  [Clear All Filters]
2017-04-20
McCall, Roderick, McGee, Fintan, Meschtscherjakov, Alexander, Louveton, Nicolas, Engel, Thomas.  2016.  Towards A Taxonomy of Autonomous Vehicle Handover Situations. Proceedings of the 8th International Conference on Automotive User Interfaces and Interactive Vehicular Applications. :193–200.

This paper proposes a taxonomy of autonomous vehicle handover situations with a particular emphasis on situational awareness. It focuses on a number of research challenges such as: legal responsibility, the situational awareness level of the driver and the vehicle, the knowledge the vehicle must have of the driver's driving skills as well as the in-vehicle context. The taxonomy acts as a starting point for researchers and practitioners to frame the discussion on this complex problem.

2015-05-05
Aydin, A., Alkhalaf, M., Bultan, T..  2014.  Automated Test Generation from Vulnerability Signatures. Software Testing, Verification and Validation (ICST), 2014 IEEE Seventh International Conference on. :193-202.

Web applications need to validate and sanitize user inputs in order to avoid attacks such as Cross Site Scripting (XSS) and SQL Injection. Writing string manipulation code for input validation and sanitization is an error-prone process leading to many vulnerabilities in real-world web applications. Automata-based static string analysis techniques can be used to automatically compute vulnerability signatures (represented as automata) that characterize all the inputs that can exploit a vulnerability. However, there are several factors that limit the applicability of static string analysis techniques in general: 1) undesirability of static string analysis requires the use of approximations leading to false positives, 2) static string analysis tools do not handle all string operations, 3) dynamic nature of the scripting languages makes static analysis difficult. In this paper, we show that vulnerability signatures computed for deliberately insecure web applications (developed for demonstrating different types of vulnerabilities) can be used to generate test cases for other applications. Given a vulnerability signature represented as an automaton, we present algorithms for test case generation based on state, transition, and path coverage. These automatically generated test cases can be used to test applications that are not analyzable statically, and to discover attack strings that demonstrate how the vulnerabilities can be exploited.