Biblio
Filters: Keyword is WiFi signal [Clear All Filters]
The Short-Time Fourier Transform based WiFi Human Activity Classification Algorithm. 2021 17th International Conference on Computational Intelligence and Security (CIS). :30—34.
.
2021. The accurate classification of WiFi-based activity patterns is still an open problem and is critical to detect behavior for non-visualization applications. This paper proposes a novel approach that uses WiFi-based IQ data and short-time Fourier transform (STFT) time-frequency images to automatically and accurately classify human activities. The offsets features, calculated from time-domain values and one-dimensional principal component analysis (1D-PCA) values and two-dimensional principal component analysis (2D-PCA) values, are applied as features to input the classifiers. The machine learning methods such as the bagging, boosting, support vector machine (SVM), random forests (RF) as the classifier to output the performance. The experimental data validate our proposed method with 15000 experimental samples from five categories of WiFi signals (empty, marching on the spot, rope skipping, both arms rotating;singlearm rotating). The results show that the method companying with the RF classifier surpasses the approach with alternative classifiers on classification performance and finally obtains a 62.66% classification rate, 85.06% mean accuracy, and 90.67% mean specificity.
MuTrack: Multiparameter Based Indoor Passive Tracking System Using Commodity WiFi. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1—6.
.
2020. Device-Free Localization and Tracking (DFLT) acts as a key component for the contactless awareness applications such as elderly care and home security. However, the random phase errors in WiFi signal and weak target echoes submerged in background clutter signals are mainly obstacles for current DFLT systems. In this paper, we propose the design and implementation of MuTrack, a multiparameter based DFLT system using commodity WiFi devices with a single link. Firstly, we select an antenna with maximum reliability index as the reference antenna for signal sanitization in which the conjugate operation removes the random phase errors. Secondly, we design a multi-dimensional parameters estimator and then refine path parameters by optimizing the complete data of path components. Finally, the Hungarian Kalman Filter based tracking method is proposed to derive accurate locations from low-resolution parameter estimates. We extensively validate the proposed system in typical indoor environment and these experimental results show that MuTrack can achieve high tracking accuracy with the mean error of 0.82 m using only a single link.