Biblio
Filters: Keyword is composability [Clear All Filters]
Secure MatDot codes: a secure, distributed matrix multiplication scheme. 2022 IEEE Information Theory Workshop (ITW). :149–154.
.
2022. This paper presents secure MatDot codes, a family of evaluation codes that support secure distributed matrix multiplication via a careful selection of evaluation points that exploit the properties of the dual code. We show that the secure MatDot codes provide security against the user by using locally recoverable codes. These new codes complement the recently studied discrete Fourier transform codes for distributed matrix multiplication schemes that also provide security against the user. There are scenarios where the associated costs are the same for both families and instances where the secure MatDot codes offer a lower cost. In addition, the secure MatDot code provides an alternative way to handle the matrix multiplication by identifying the fastest servers in advance. In this way, it can determine a product using fewer servers, specified in advance, than the MatDot codes which achieve the optimal recovery threshold for distributed matrix multiplication schemes.
VDBWGDL: Vulnerability Detection Based On Weight Graph And Deep Learning. 2022 52nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W). :186–190.
.
2022. Vulnerability detection has always been an essential part of maintaining information security, and the existing work can significantly improve the performance of vulnerability detection. However, due to the differences in representation forms and deep learning models, various methods still have some limitations. In order to overcome this defect, We propose a vulnerability detection method VDBWGDL, based on weight graphs and deep learning. Firstly, it accurately locates vulnerability-sensitive keywords and generates variant codes that satisfy vulnerability trigger logic and programmer programming style through code variant methods. Then, the control flow graph is sliced for vulnerable code keywords and program critical statements. The code block is converted into a vector containing rich semantic information and input into the weight map through the deep learning model. According to specific rules, different weights are set for each node. Finally, the similarity is obtained through the similarity comparison algorithm, and the suspected vulnerability is output according to different thresholds. VDBWGDL improves the accuracy and F1 value by 3.98% and 4.85% compared with four state-of-the-art models. The experimental results prove the effectiveness of VDBWGDL.
ISSN: 2325-6664
Local Constraint-Based Ordered Statistics Decoding for Short Block Codes. 2022 IEEE Information Theory Workshop (ITW). :107–112.
.
2022. In this paper, we propose a new ordered statistics decoding (OSD) for linear block codes, which is referred to as local constraint-based OSD (LC-OSD). Distinguished from the conventional OSD, which chooses the most reliable basis (MRB) for re-encoding, the LC-OSD chooses an extended MRB on which local constraints are naturally imposed. A list of candidate codewords is then generated by performing a serial list Viterbi algorithm (SLVA) over the trellis specified with the local constraints. To terminate early the SLVA for complexity reduction, we present a simple criterion which monitors the ratio of the bound on the likelihood of the unexplored candidate codewords to the sum of the hard-decision vector’s likelihood and the up-to-date optimal candidate’s likelihood. Simulation results show that the LC-OSD can have a much less number of test patterns than that of the conventional OSD but cause negligible performance loss. Comparisons with other complexity-reduced OSDs are also conducted, showing the advantages of the LC-OSD in terms of complexity.
Source Code Vulnerability Mining Method based on Graph Neural Network. 2022 IEEE 2nd International Conference on Electronic Technology, Communication and Information (ICETCI). :1177–1180.
.
2022. Vulnerability discovery is an important field of computer security research and development today. Because most of the current vulnerability discovery methods require large-scale manual auditing, and the code parsing process is cumbersome and time-consuming, the vulnerability discovery effect is reduced. Therefore, for the uncertainty of vulnerability discovery itself, it is the most basic tool design principle that auxiliary security analysts cannot completely replace them. The purpose of this paper is to study the source code vulnerability discovery method based on graph neural network. This paper analyzes the three processes of data preparation, source code vulnerability mining and security assurance of the source code vulnerability mining method, and also analyzes the suspiciousness and particularity of the experimental results. The empirical analysis results show that the types of traditional source code vulnerability mining methods become more concise and convenient after using graph neural network technology, and we conducted a survey and found that more than 82% of people felt that the design source code vulnerability mining method used When it comes to graph neural networks, it is found that the design efficiency has become higher.
A Secure Turbo Codes Design on Physical Layer Security Based on Interleaving and Puncturing. 2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall). :1–7.
.
2022. Nowadays, improving the reliability and security of the transmitted data has gained more attention with the increase in emerging power-limited and lightweight communication devices. Also, the transmission needs to meet specific latency requirements. Combining data encryption and encoding in one physical layer block has been exploited to study the effect on security and latency over traditional sequential data transmission. Some of the current works target secure error-correcting codes that may be candidates for post-quantum computing. However, modifying the popularly used channel coding techniques to guarantee secrecy and maintain the same error performance and complexity at the decoder is challenging since the structure of the channel coding blocks is altered which results in less optimal decoding performance. Also, the redundancy nature of the error-correcting codes complicates the encryption method. In this paper, we briefly review the proposed security schemes on Turbo codes. Then, we propose a secure turbo code design and compare it with the relevant security schemes in the literature. We show that the proposed method is more secure without adding complexity.
ISSN: 2577-2465
Ternary Convolutional LDGM Codes with Applications to Gaussian Source Compression. 2022 IEEE International Symposium on Information Theory (ISIT). :73–78.
.
2022. We present a ternary source coding scheme in this paper, which is a special class of low density generator matrix (LDGM) codes. We prove that a ternary linear block LDGM code, whose generator matrix is randomly generated with each element independent and identically distributed, is universal for source coding in terms of the symbol-error rate (SER). To circumvent the high-complex maximum likelihood decoding, we introduce a special class of convolutional LDGM codes, called block Markov superposition transmission of repetition (BMST-R) codes, which are iteratively decodable by a sliding window algorithm. Then the presented BMST-R codes are applied to construct a tandem scheme for Gaussian source compression, where a dead-zone quantizer is introduced before the ternary source coding. The main advantages of this scheme are its universality and flexibility. The dead-zone quantizer can choose a proper quantization level according to the distortion requirement, while the LDGM codes can adapt the code rate to approach the entropy of the quantized sequence. Numerical results show that the proposed scheme performs well for ternary sources over a wide range of code rates and that the distortion introduced by quantization dominates provided that the code rate is slightly greater than the discrete entropy.
ISSN: 2157-8117
On an extremal problem of regular graphs related to fractional repetition codes. 2022 IEEE International Symposium on Information Theory (ISIT). :1566–1571.
.
2022. Fractional repetition (FR) codes are a special family of regenerating codes with the repair-by-transfer property. The constructions of FR codes are naturally related to combinatorial designs, graphs, and hypergraphs. Given the file size of an FR code, it is desirable to determine the minimum number of storage nodes needed. The problem is related to an extremal graph theory problem, which asks for the minimum number of vertices of an α-regular graph such that any subgraph with k vertices has at most δ edges. In this paper, we present a class of regular graphs for this problem to give the bounds for the minimum number of storage nodes for the FR codes.
ISSN: 2157-8117
Analyzing Machine Learning-based Feature Selection for Botnet Detection. 2022 1st International Conference on Information System & Information Technology (ICISIT). :386–391.
.
2022. In this cyber era, the number of cybercrime problems grows significantly, impacting network communication security. Some factors have been identified, such as malware. It is a malicious code attack that is harmful. On the other hand, a botnet can exploit malware to threaten whole computer networks. Therefore, it needs to be handled appropriately. Several botnet activity detection models have been developed using a classification approach in previous studies. However, it has not been analyzed about selecting features to be used in the learning process of the classification algorithm. In fact, the number and selection of features implemented can affect the detection accuracy of the classification algorithm. This paper proposes an analysis technique for determining the number and selection of features developed based on previous research. It aims to obtain the analysis of using features. The experiment has been conducted using several classification algorithms, namely Decision tree, k-NN, Naïve Bayes, Random Forest, and Support Vector Machine (SVM). The results show that taking a certain number of features increases the detection accuracy. Compared with previous studies, the results obtained show that the average detection accuracy of 98.34% using four features has the highest value from the previous study, 97.46% using 11 features. These results indicate that the selection of the correct number and features affects the performance of the botnet detection model.
Botnet Detection via Machine Learning Techniques. 2022 International Conference on Big Data, Information and Computer Network (BDICN). :831–836.
.
2022. The botnet is a serious network security threat that can cause servers crash, so how to detect the behavior of Botnet has already become an important part of the research of network security. DNS(Domain Name System) request is the first step for most of the mainframe computers controlled by Botnet to communicate with the C&C(command; control) server. The detection of DNS request domain names is an important way for mainframe computers controlled by Botnet. However, the detection method based on fixed rules is hard to take effect for botnet based on DGA(Domain Generation Algorithm) because malicious domain names keep evolving and derive many different generation methods. Contrasted with the traditional methods, the method based on machine learning is a better way to detect it by learning and modeling the DGA. This paper presents a method based on the Naive Bayes model, the XGBoost model, the SVM(Support Vector Machine) model, and the MLP(Multi-Layer Perceptron) model, and tests it with real data sets collected from DGA, Alexa, and Secrepo. The experimental results show the precision score, the recall score, and the F1 score for each model.
A Secured Botnet Prevention Mechanism for HTTP Flooding Based DDoS Attack. 2022 3rd International Conference for Emerging Technology (INCET). :1–5.
.
2022. HTTP flood DDoS (Distributed Denial of Service) attacks send illegitimate HTTP requests to the targeted site or server. These kinds of attacks corrupt the networks with the help of massive attacking nodes thus blocking incoming traffic. Computer network connected devices are the major source to distributed denial of service attacks (or) botnet attacks. The computer manufacturers rapidly increase the network devices as per the requirement increases in the different environmental needs. Generally the manufacturers cannot ship computer network products with high level security. Those network products require additional security to prevent the DDoS attacks. The present technology is filled with 4G that will impact DDoS attacks. The million DDoS attacks had experienced in every year by companies or individuals. DDoS attack in a network would lead to loss of assets, data and other resources. Purchasing the new equipment and repair of the DDoS attacked network is financially becomes high in the value. The prevention mechanisms like CAPTCHA are now outdated to the bots and which are solved easily by the advanced bots. In the proposed work a secured botnet prevention mechanism provides network security by prevent and mitigate the http flooding based DDoS attack and allow genuine incoming traffic to the application or server in a network environment with the help of integrating invisible challenge and Resource Request Rate algorithms to the application. It offers double security layer to handle malicious bots to prevent and mitigate.
Modeling and Simulation of IoT Botnet Behaviors Using DEVS. 2022 13th International Conference on Information and Communication Systems (ICICS). :42–47.
.
2022. The ubiquitous nature of the Internet of Things (IoT) devices and their wide-scale deployment have remarkably attracted hackers to exploit weakly-configured and vulnerable devices, allowing them to form large IoT botnets and launch unprecedented attacks. Modeling the behavior of IoT botnets leads to a better understanding of their spreading mechanisms and the state of the network at different levels of the attack. In this paper, we propose a generic model to capture the behavior of IoT botnets. The proposed model uses Markov Chains to study the botnet behavior. Discrete Event System Specifications environment is used to simulate the proposed model.
ISSN: 2573-3346
A Mechine Learning Approach for Botnet Detection Using LightGBM. 2022 3rd International Conference on Computer Vision, Image and Deep Learning & International Conference on Computer Engineering and Applications (CVIDL & ICCEA). :829–833.
.
2022. The botnet-based network assault are one of the most serious security threats overlay the Internet this day. Although significant progress has been made in this region of research in recent years, it is still an ongoing and challenging topic to virtually direction the threat of botnets due to their continuous evolution, increasing complexity and stealth, and the difficulties in detection and defense caused by the limitations of network and system architectures. In this paper, we propose a novel and efficient botnet detection method, and the results of the detection method are validated with the CTU-13 dataset.
An Evaluation of IoT DDoS Cryptojacking Malware and Mirai Botnet. 2022 IEEE World AI IoT Congress (AIIoT). :725–729.
.
2022. This paper dives into the growing world of IoT botnets that have taken the world by storm in the past five years. Though alone an IP camera cannot produce enough traffic to be considered a DDoS. But a botnet that has over 150,000 connected IP cameras can generate as much as 1 Tbps in traffic. Botnets catch many by surprise because their attacks and infections may not be as apparent as a DDoS, some other cases include using these cameras and printers for extracting information or quietly mine cryptocurrency at the IoT device owner's expense. Here we analyze damages on IoT hacking and define botnet architecture. An overview of Mirai botnet and cryptojacking provided to better understand the IoT botnets.
GANIBOT: A Network Flow Based Semi Supervised Generative Adversarial Networks Model for IoT Botnets Detection. 2022 IEEE International Conference on Omni-layer Intelligent Systems (COINS). :1–5.
.
2022. The spread of Internet of Things (IoT) devices in our homes, healthcare, industries etc. are more easily infiltrated than desktop computers have resulted in a surge in botnet attacks based on IoT devices, which may jeopardize the IoT security. Hence, there is a need to detect these attacks and mitigate the damage. Existing systems rely on supervised learning-based intrusion detection methods, which require a large labelled data set to achieve high accuracy. Botnets are onerous to detect because of stealthy command & control protocols and large amount of network traffic and hence obtaining a large labelled data set is also difficult. Due to unlabeled Network traffic, the supervised classification techniques may not be used directly to sort out the botnet that is responsible for the attack. To overcome this limitation, a semi-supervised Deep Learning (DL) approach is proposed which uses Semi-supervised GAN (SGAN) for IoT botnet detection on N-BaIoT dataset which contains "Bashlite" and "Mirai" attacks along with their sub attacks. The results have been compared with the state-of-the-art supervised solutions and found efficient in terms of better accuracy which is 99.89% in binary classification and 59% in multi classification on larger dataset, faster and reliable model for IoT Botnet detection.
Botnet Detection Based on Machine Learning. 2022 International Conference on Blockchain Technology and Information Security (ICBCTIS). :213–217.
.
2022. A botnet is a new type of attack method developed and integrated on the basis of traditional malicious code such as network worms and backdoor tools, and it is extremely threatening. This course combines deep learning and neural network methods in machine learning methods to detect and classify the existence of botnets. This sample does not rely on any prior features, the final multi-class classification accuracy rate is higher than 98.7%, the effect is significant.
An Approach for P2P Based Botnet Detection Using Machine Learning. 2022 Third International Conference on Intelligent Computing Instrumentation and Control Technologies (ICICICT). :627–631.
.
2022. The internet has developed and transformed the world dramatically in recent years, which has resulted in several cyberattacks. Cybersecurity is one of society’s most serious challenge, costing millions of dollars every year. The research presented here will look into this area, focusing on malware that can establish botnets, and in particular, detecting connections made by infected workstations connecting with the attacker’s machine. In recent years, the frequency of network security incidents has risen dramatically. Botnets have previously been widely used by attackers to carry out a variety of malicious activities, such as compromising machines to monitor their activities by installing a keylogger or sniffing traffic, launching Distributed Denial of Service (DDOS) attacks, stealing the identity of the machine or credentials, and even exfiltrating data from the user’s computer. Botnet detection is still a work in progress because no one approach exists that can detect a botnet’s whole ecosystem. A detailed analysis of a botnet, discuss numerous parameter’s result of detection methods related to botnet attacks, as well as existing work of botnet identification in field of machine learning are discuss here. This paper focuses on the comparative analysis of various classifier based on design of botnet detection technique which are able to detect P2P botnet using machine learning classifier.
On Resident Strategy for White-Hat Botnet in Botnet Defense System. 2022 IEEE International Conference on Consumer Electronics - Taiwan. :189–190.
.
2022. This paper proposes a new strategy, named resident strategy, for defending IoT networks from repeated infection of malicious botnets in the Botnet Defense System (BDS). The resident strategy aims to make a small-scale white-hat botnet resident in the network respond immediately to invading malicious botnets. The BDS controls the resident white-hat botnet with two parameters: upper and lower number of its bots. The lower limit prevents the white-hat botnet from disappearing, while the upper limit prevents it from filling up the network. The BDS with the strategy was modeled with agent-oriented Petri nets and was evaluated through the simulation. The result showed that the proposed strategy was able to deal with repeatedly invading malicious botnets with about half the scale of the conventional white-hat botnet.
ISSN: 2575-8284
Intrinsic Decision based Situation Reaction CAPTCHA for Better Turing Test. 2022 International Conference on Industry 4.0 Technology (I4Tech). :1–6.
.
2022. In this modern era, web security is often required to beware from fraudulent activities. There are several hackers try to build a program that can interact with web pages automatically and try to breach the data or make several junk entries due to that web servers get hanged. To stop the junk entries; CAPTCHA is a solution through which bots can be identified and denied the machine based program to intervene with. CAPTCHA stands for Completely Automated Public Turing test to tell Computers and Humans Apart. In the progression of CAPTCHA; there are several methods available such as distorted text, picture recognition, math solving and gaming based CAPTCHA. Game based turing test is very much popular now a day but there are several methods through which game can be cracked because game is not intellectual. So, there is a required of intrinsic CAPTCHA. The proposed system is based on Intrinsic Decision based Situation Reaction Challenge. The proposed system is able to better classify the humans and bots by its intrinsic problem. It has been considered as human is more capable to deal with the real life problems and machine is bit poor to understand the situation or how the problem can be solved. So, proposed system challenges with simple situations which is easier for human but almost impossible for bots. Human is required to use his common sense only and problem can be solved with few seconds.
Robust Text CAPTCHAs Using Adversarial Examples. 2022 IEEE International Conference on Big Data (Big Data). :1495–1504.
.
2022. CAPTCHA (Completely Automated Public Turing test to tell Computers and Humans Apart) is a widely used technology to distinguish real users and automated users such as bots. However, the advance of AI technologies weakens many CAPTCHA tests and can induce security concerns. In this paper, we propose a user-friendly text-based CAPTCHA generation method named Robust Text CAPTCHA (RTC). At the first stage, the foregrounds and backgrounds are constructed with font and background images respectively sampled from font and image libraries, and they are then synthesized into identifiable pseudo adversarial CAPTCHAs. At the second stage, we utilize a highly transferable adversarial attack designed for text CAPTCHAs to better obstruct CAPTCHA solvers. Our experiments cover comprehensive models including shallow models such as KNN, SVM and random forest, as well as various deep neural networks and OCR models. Experiments show that our CAPTCHAs have a failure rate lower than one millionth in general and high usability. They are also robust against various defensive techniques that attackers may employ, including adversarially trained CAPTCHA solvers and solvers trained with collected RTCs using manual annotation. Codes available at https://github.com/RulinShao/RTC.
Cracking CAPTCHAs using Deep Learning. 2022 Second International Conference on Artificial Intelligence and Smart Energy (ICAIS). :437–443.
.
2022. In this decade, digital transactions have risen exponentially demanding more reliable and secure authentication systems. CAPTCHA (Completely Automated Public Turing Test to tell Computers and Humans Apart) system plays a major role in these systems. These CAPTCHAs are available in character sequence, picture-based, and audio-based formats. It is very essential that these CAPTCHAs should be able to differentiate a computer program from a human precisely. This work tests the strength of text-based CAPTCHAs by breaking them using an algorithm built on CNN (Convolution Neural Network) and RNN (Recurrent Neural Network). The algorithm is designed in such a way as an attempt to break the security features designers have included in the CAPTCHAs to make them hard to be cracked by machines. This algorithm is tested against the synthetic dataset generated in accordance with the schemes used in popular websites. The experiment results exhibit that the model has shown a considerable performance against both the synthetic and real-world CAPTCHAs.
Video Captcha Proposition based on VQA, NLP, Deep Learning and Computer Vision. 2022 5th International Conference on Advances in Science and Technology (ICAST). :196–200.
.
2022. Visual Question Answering or VQA is a technique used in diverse domains ranging from simple visual questions and answers on short videos to security. Here in this paper, we talk about the video captcha that will be deployed for user authentication. Randomly any short video of length 10 to 20 seconds will be displayed and automated questions and answers will be generated by the system using AI and ML. Automated Programs have maliciously affected gateways such as login, registering etc. Therefore, in today's environment it is necessary to deploy such security programs that can recognize the objects in a video and generate automated MCQs real time that can be of context like the object movements, color, background etc. The features in the video highlighted will be recorded for generating MCQs based on the short videos. These videos can be random in nature. They can be taken from any official websites or even from your own local computer with prior permission from the user. The format of the video must be kept as constant every time and must be cross checked before flashing it to the user. Once our system identifies the captcha and determines the authenticity of a user, the other website in which the user wants to login, can skip the step of captcha verification as it will be done by our system. A session will be maintained for the user, eliminating the hassle of authenticating themselves again and again for no reason. Once the video will be flashed for an IP address and if the answers marked by the user for the current video captcha are correct, we will add the information like the IP address, the video and the questions in our database to avoid repeating the same captcha for the same IP address. In this paper, we proposed the methodology of execution of the aforementioned and will discuss the benefits and limitations of video captcha along with the visual questions and answering.
CaptchaGG: A linear graphical CAPTCHA recognition model based on CNN and RNN. 2022 9th International Conference on Digital Home (ICDH). :175–180.
.
2022. This paper presents CaptchaGG, a model for recognizing linear graphical CAPTCHAs. As in the previous society, CAPTCHA is becoming more and more complex, but in some scenarios, complex CAPTCHA is not needed, and usually, linear graphical CAPTCHA can meet the corresponding functional scenarios, such as message boards of websites and registration of accounts with low security. The scheme is based on convolutional neural networks for feature extraction of CAPTCHAs, recurrent neural forests A neural network that is too complex will lead to problems such as difficulty in training and gradient disappearance, and too simple will lead to underfitting of the model. For the single problem of linear graphical CAPTCHA recognition, the model which has a simple architecture, extracting features by convolutional neural network, sequence modeling by recurrent neural network, and finally classification and recognition, can achieve an accuracy of 96% or more recognition at a lower complexity.
A Robust Captcha Scheme for Web Security. 2022 6th International Conference On Computing, Communication, Control And Automation (ICCUBEA. :1–6.
.
2022. The internet has grown increasingly important in everyone's everyday lives due to the availability of numerous web services such as email, cloud storage, video streaming, music streaming, and search engines. On the other hand, attacks by computer programmes such as bots are a common hazard to these internet services. Captcha is a computer program that helps a server-side company determine whether or not a real user is requesting access. Captcha is a security feature that prevents unauthorised access to a user's account by protecting restricted areas from automated programmes, bots, or hackers. Many websites utilise Captcha to prevent spam and other hazardous assaults when visitors log in. However, in recent years, the complexity of Captcha solving has become difficult for humans too, making it less user friendly. To solve this, we propose creating a Captcha that is both simple and engaging for people while also robust enough to protect sensitive data from bots and hackers on the internet. The suggested captcha scheme employs animated artifacts, rotation, and variable fonts as resistance techniques. The proposed captcha technique proves successful against OCR bots with less than 15% accuracy while being easier to solve for human users with more than 98% accuracy.
ISSN: 2771-1358
Deep CAPTCHA Recognition Using Encapsulated Preprocessing and Heterogeneous Datasets. IEEE INFOCOM 2022 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :1–6.
.
2022. CAPTCHA (Completely Automated Public Turing test to tell Computers and Humans Apart) is an important security technique designed to deter bots from abusing software systems, which has broader applications in cyberspace. CAPTCHAs come in a variety of forms, including the deciphering of obfuscated text, transcribing of audio messages, and tracking mouse movement, among others. This paper focuses on using deep learning techniques to recognize text-based CAPTCHAs. In particular, our work focuses on generating training datasets using different CAPTCHA schemes, along with a pre-processing technique allowing for character-based recognition. We have encapsulated the CRABI (CAPTCHA Recognition with Attached Binary Images) framework to give an image multiple labels for improvement in feature extraction. Using real-world datasets, performance evaluations are conducted to validate the efficacy of our proposed approach on several neural network architectures (e.g., custom CNN architecture, VGG16, ResNet50, and MobileNet). The experimental results confirm that over 90% accuracy can be achieved on most models.
Implementation of Machine Learning for CAPTCHAs Authentication Using Facial Recognition. 2022 IEEE International Conference on Data Science and Information System (ICDSIS). :1–5.
.
2022. Web-based technologies are evolving day by day and becoming more interactive and secure. Completely Automated Public Turing test to tell Computers and Humans Apart (CAPTCHA) is one of the security features that help detect automated bots on the Web. Earlier captcha was complex designed text-based, but some optical recognition-based algorithms can be used to crack it. That is why now the captcha system is image-based. But after the arrival of strong image recognition algorithms, image-based captchas can also be cracked nowadays. In this paper, we propose a new captcha system that can be used to differentiate real humans and bots on the Web. We use advanced deep layers with pre-trained machine learning models for captchas authentication using a facial recognition system.