Visible to the public Biblio

Filters: Keyword is scikit-learn  [Clear All Filters]
2021-09-21
Ghanem, Sahar M., Aldeen, Donia Naief Saad.  2020.  AltCC: Alternating Clustering and Classification for Batch Analysis of Malware Behavior. 2020 International Symposium on Networks, Computers and Communications (ISNCC). :1–6.
The most common goal of malware analysis is to determine if a given binary is malware or benign. Another objective is similarity analysis of malware binaries to understand how new samples differ from known ones. Similarity analysis helps to analyze the malware with respect to those already analyzed and guides the discovery of novel aspects that should be analyzed more in depth. In this work, we are concerned with similarities and differences detection of malware binaries. Thousands of malware are created every day and machine learning is an indispensable tool for its analysis. Previous work has studied clustering and classification as competing paradigms. However, in this work, a malware similarity analysis technique (AltCC) is proposed that alternates the use of clustering and classification. In addition it assumes the malware are not available all at once but processed in batches. Initially, clustering is applied to the first batch to group similar binaries into novel malware classes. Then, the discovered classes are used to train a classifier. For the following batches, the classifier is used to decide if a new binary classifies to a known class or otherwise unclassified. The unclassified binaries are clustered and the process repeats. Malware clustering (i.e. labeling) may entail further human expert analysis but dramatically reduces the effort. The effectiveness of AltCC is studied using a dataset of 29,661 malware binaries that represent malware received in six consecutive days/batches. When KMeans is used to label the dataset all at once and its labeling is compared to AltCC's, the adjusted-rand-index scores 0.71.
2021-03-09
Susanto, Stiawan, D., Arifin, M. A. S., Idris, M. Y., Budiarto, R..  2020.  IoT Botnet Malware Classification Using Weka Tool and Scikit-learn Machine Learning. 2020 7th International Conference on Electrical Engineering, Computer Sciences and Informatics (EECSI). :15—20.

Botnet is one of the threats to internet network security-Botmaster in carrying out attacks on the network by relying on communication on network traffic. Internet of Things (IoT) network infrastructure consists of devices that are inexpensive, low-power, always-on, always connected to the network, and are inconspicuous and have ubiquity and inconspicuousness characteristics so that these characteristics make IoT devices an attractive target for botnet malware attacks. In identifying whether packet traffic is a malware attack or not, one can use machine learning classification methods. By using Weka and Scikit-learn analysis tools machine learning, this paper implements four machine learning algorithms, i.e.: AdaBoost, Decision Tree, Random Forest, and Naïve Bayes. Then experiments are conducted to measure the performance of the four algorithms in terms of accuracy, execution time, and false positive rate (FPR). Experiment results show that the Weka tool provides more accurate and efficient classification methods. However, in false positive rate, the use of Scikit-learn provides better results.