Visible to the public Biblio

Filters: Keyword is echo  [Clear All Filters]
2021-05-13
Lit, Yanyan, Kim, Sara, Sy, Eric.  2021.  A Survey on Amazon Alexa Attack Surfaces. 2021 IEEE 18th Annual Consumer Communications Networking Conference (CCNC). :1–7.
Since being launched in 2014, Alexa, Amazon's versatile cloud-based voice service, is now active in over 100 million households worldwide [1]. Alexa's user-friendly, personalized vocal experience offers customers a more natural way of interacting with cutting-edge technology by allowing the ability to directly dictate commands to the assistant. Now in the present year, the Alexa service is more accessible than ever, available on hundreds of millions of devices from not only Amazon but third-party device manufacturers. Unfortunately, that success has also been the source of concern and controversy. The success of Alexa is based on its effortless usability, but in turn, that has led to a lack of sufficient security. This paper surveys various attacks against Amazon Alexa ecosystem including attacks against the frontend voice capturing and the cloud backend voice command recognition and processing. Overall, we have identified six attack surfaces covering the lifecycle of Alexa voice interaction that spans several stages including voice data collection, transmission, processing and storage. We also discuss the potential mitigation solutions for each attack surface to better improve Alexa or other voice assistants in terms of security and privacy.
2017-02-21
C. Liu, F. Xi, S. Chen, Z. Liu.  2015.  "Anti-jamming target detection of pulsed-type radars in QuadCS domain". 2015 IEEE International Conference on Digital Signal Processing (DSP). :75-79.

Quadrature compressive sampling (QuadCS) is a newly introduced sub-Nyquist sampling for acquiring inphase and quadrature components of radio-frequency signals. This paper develops a target detection scheme of pulsed-type radars in the presence of digital radio frequency memory (DRFM) repeat jammers with the radar echoes sampled by the QuadCS system. For diversifying pulses, the proposed scheme first separates the target echoes from the DRFM repeat jammers using CS recovery algorithms, and then removes the jammers to perform the target detection. Because of the separation processing, the jammer leakage through range sidelobe variation of the classical match-filter processing will not appear. Simulation results confirm our findings. The proposed scheme with the data at one eighth the Nyquist rate outperforms the classic processing with Nyquist samples in the presence of DRFM repeat jammers.

2015-05-05
Zhang Deping, Wang Quan, Wang Qingping, Wu WeiWei, Yuan NaiChang.  2014.  A real continuously moving target simulation system design without time delay error. Signal Processing, Communications and Computing (ICSPCC), 2014 IEEE International Conference on. :258-261.

The time delay of echo generated by the moving target simulator based on digital delay technique is discrete. So there are range and phase errors between the simulated target and real target, and the simulated target will move discontinuously due to the discrete time delay. In order to solve this problem and generate a continuously moving target, this paper uses signal processing technique to adjust the range and phase errors between the two targets. By adjusting the range gate, the time delay error is reduced to be smaller than sampling interval. According to the relationship between range and phase, the left error within one range bin can be removed equivalently by phase compensation. The simulation results show that by adjusting the range gate, the time delay errors are greatly reduced, and the left errors can be removed by phase compensation. In other words, a real continuously moving target is generated and the problem is solved.