Visible to the public Biblio

Filters: Keyword is radar signal processing  [Clear All Filters]
2021-11-30
Xiao, Hu, Wen, Jiang.  2020.  A Highly Integrated E-Band Radar. 2020 9th Asia-Pacific Conference on Antennas and Propagation (APCAP). :1–2.
In this paper, an E-band MIMO radar with 1 transmit and 4 receive channels is designed. The signal bandwidth is 2GHz at 77GHz, the max power of transmitted signal which is Frequency-modulated continuous-wave (FMCW) is 13dBm. This radar consists of two cascade parts: RF frond-end and digital signal process block. The RF front-end part includes antenna array, millimeter wave transceiver chips, and the digital signal process part includes FPGA, DSP and power supply circuits. It could be used in foreign object detection (FOD), landing assistance of helicopter and security checking.
2017-02-21
I. Ilhan, A. C. Gurbuz, O. Arikan.  2015.  "Sparsity based robust Stretch Processing". 2015 IEEE International Conference on Digital Signal Processing (DSP). :95-99.

Strecth Processing (SP) is a radar signal processing technique that provides high-range resolution with processing large bandwidth signals with lower rate Analog to Digital Converter(ADC)s. The range resolution of the large bandwidth signal is obtained through looking into a limited range window and low rate ADC samples. The target space in the observed range window is sparse and Compressive sensing(CS) is an important tool to further decrease the number of measurements and sparsely reconstruct the target space for sparse scenes with a known basis which is the Fourier basis in the general application of SP. Although classical CS techniques might be directly applied to SP, due to off-grid targets reconstruction performance degrades. In this paper, applicability of compressive sensing framework and its sparse signal recovery techniques to stretch processing is studied considering off-grid cases. For sparsity based robust SP, Perturbed Parameter Orthogonal Matching Pursuit(PPOMP) algorithm is proposed. PPOMP is an iterative technique that estimates off-grid target parameters through a gradient descent. To compute the error between actual and reconstructed parameters, Earth Movers Distance(EMD) is used. Performance of proposed algorithm are compared with classical CS and SP techniques.

S. Chen, F. Xi, Z. Liu, B. Bao.  2015.  "Quadrature compressive sampling of multiband radar signals at sub-Landau rate". 2015 IEEE International Conference on Digital Signal Processing (DSP). :234-238.

Sampling multiband radar signals is an essential issue of multiband/multifunction radar. This paper proposes a multiband quadrature compressive sampling (MQCS) system to perform the sampling at sub-Landau rate. The MQCS system randomly projects the multiband signal into a compressive multiband one by modulating each subband signal with a low-pass signal and then samples the compressive multiband signal at Landau-rate with output of compressive measurements. The compressive inphase and quadrature (I/Q) components of each subband are extracted from the compressive measurements respectively and are exploited to recover the baseband I/Q components. As effective bandwidth of the compressive multiband signal is much less than that of the received multiband one, the sampling rate is much less than Landau rate of the received signal. Simulation results validate that the proposed MQCS system can effectively acquire and reconstruct the baseband I/Q components of the multiband signals.

2015-05-05
Zhang Deping, Wang Quan, Wang Qingping, Wu WeiWei, Yuan NaiChang.  2014.  A real continuously moving target simulation system design without time delay error. Signal Processing, Communications and Computing (ICSPCC), 2014 IEEE International Conference on. :258-261.

The time delay of echo generated by the moving target simulator based on digital delay technique is discrete. So there are range and phase errors between the simulated target and real target, and the simulated target will move discontinuously due to the discrete time delay. In order to solve this problem and generate a continuously moving target, this paper uses signal processing technique to adjust the range and phase errors between the two targets. By adjusting the range gate, the time delay error is reduced to be smaller than sampling interval. According to the relationship between range and phase, the left error within one range bin can be removed equivalently by phase compensation. The simulation results show that by adjusting the range gate, the time delay errors are greatly reduced, and the left errors can be removed by phase compensation. In other words, a real continuously moving target is generated and the problem is solved.