Visible to the public Biblio

Filters: Keyword is AES algorithm  [Clear All Filters]
2022-05-09
Manyura, Momanyi Biffon, Gizaw, Sintayehu Mandefro.  2021.  Enhancing Cloud Data Privacy Using Pre-Internet Data Encryption. 2021 18th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP). :446–449.
Cloud computing is one of the greatest and authoritative paradigms in computing as it provides access and use of various third-party services at a lower cost. However, there exist various security challenges facing cloud computing especially in the aspect of data privacy and this is more critical when dealing with sensitive personal or organization's data. Cloud service providers encrypt data during transfer from the local hard drive to the cloud server and at the server-side, the only problem is that the encryption key is stored by the service provider meaning they can decrypt your data. This paper discusses how cloud security can be enhanced by using client-side data encryption (pre-internet encryption), this will allow the clients to encrypt data before uploading to the cloud and store the key themselves. This means that data will be rendered to the cloud in an unreadable and secure format that cannot be accessed by unauthorized persons.
2022-01-10
Gaur, Manvika, Gupta, Ritu, Singh, Abhilasha.  2021.  Use of AES Algorithm in Development of SMS Application on Android Platform. 2021 9th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). :1–5.
Encrypting the data when it comes to security from foreign intrusions is necessary. Being such a vast field the search for the perfect algorithm is crucial. Such an algorithm which is feasible, scalable and most importantly not easy to crack is the ideal algorithm for its use, in the application ``CRYPTOSMS''.SMS (Short messaging service) is not encrypted end to end like WhatsApp. So, to solve the problem of security, CRYPTOSMS was created so that all the messages sent and received are secured. This paper includes the search for the ideal algorithm for the application by comparison with other algorithms and how it is used in making of the application.
2021-05-03
Raj A.G.R., Rahul, Sunitha, R., Prasad, H.B..  2020.  Mitigating DDoS Flooding Attacks with Dynamic Path Identifiers in Wireless Network. 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA). :869–874.
The usage of wireless devices is increased from last decade due to its reliable, fast and easy transfer of data. Ensuring the security to these networks is a crucial thing. There are several types of network attacks, in this paper, DDoS attacks on networks and techniques, consequences, effects and prevention methods are focused on. The DDoS attack is carried out by multiple attackers on a system which floods the system with a greater number of incoming requests to the system. The destination system cannot immediately respond to the huge requests, due to this server crashes or halts. To detect, or to avoid such scenarios Intrusion prevention system is designed. The IPS block the network attacker at its first hop and thus reduce the malicious traffic near its source. Intrusion detection system prevents the attack without the prior knowledge of the attacker. The attack is detected at the router side and path is changed to transfer the files. The proposed model is designed to obtain the dynamic path for efficient transmission in wireless neworks.
2021-03-22
Kumar, A..  2020.  A Novel Privacy Preserving HMAC Algorithm Based on Homomorphic Encryption and Auditing for Cloud. 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). :198–202.
Cloud is the perfect way to hold our data every day. Yet the confidentiality of our data is a big concern in the handling of cloud data. Data integrity, authentication and confidentiality are basic security threats in the cloud. Cryptography techniques and Third Party Auditor (TPA) are very useful to impose the integrity and confidentiality of data. In this paper, a system is proposed Enhancing data protection that is housed in cloud computing. The suggested solution uses the RSA algorithm and the AES algorithm to encrypt user data. The hybridization of these two algorithms allows better data protection before it is stored in the cloud. Secure hash algorithm 512 is used to compute the Hash Message Authentication Code (HMAC). A stable audit program is also introduced for Third Party Auditor (TPA) use. The suggested algorithm is applied in python programming and tested in a simple sample format. It is checked that the proposed algorithm functions well to guarantee greater data protection.
2021-01-22
Chen, P., Liu, X., Zhang, J., Yu, C., Pu, H., Yao, Y..  2019.  Improvement of PRIME Protocol Based on Chaotic Cryptography. 2019 22nd International Conference on Electrical Machines and Systems (ICEMS). :1–5.

PRIME protocol is a narrowband power line communication protocol whose security is based on Advanced Encryption Standard. However, the key expansion process of AES algorithm is not unidirectional, and each round of keys are linearly related to each other, it is less difficult for eavesdroppers to crack AES encryption algorithm, leading to threats to the security of PRIME protocol. To solve this problem, this paper proposes an improvement of PRIME protocol based on chaotic cryptography. The core of this method is to use Chebyshev chaotic mapping and Logistic chaotic mapping to generate each round of key in the key expansion process of AES algorithm, In this way, the linear correlation between the key rounds can be reduced, making the key expansion process unidirectional, increasing the crack difficulty of AES encryption algorithm, and improving the security of PRIME protocol.

2020-09-08
Chen, Pengfei, Liu, Xiaosheng, Zhang, Jiarui, Yu, Chunjiao, Pu, Honghong, Yao, Yousu.  2019.  Improvement of PRIME Protocol Based on Chaotic Cryptography. 2019 22nd International Conference on Electrical Machines and Systems (ICEMS). :1–5.
PRIME protocol is a narrowband power line communication protocol whose security is based on Advanced Encryption Standard. However, the key expansion process of AES algorithm is not unidirectional, and each round of keys are linearly related to each other, it is less difficult for eavesdroppers to crack AES encryption algorithm, leading to threats to the security of PRIME protocol. To solve this problem, this paper proposes an improvement of PRIME protocol based on chaotic cryptography. The core of this method is to use Chebyshev chaotic mapping and Logistic chaotic mapping to generate each round of key in the key expansion process of AES algorithm, In this way, the linear correlation between the key rounds can be reduced, making the key expansion process unidirectional, increasing the crack difficulty of AES encryption algorithm, and improving the security of PRIME protocol.
2020-03-30
Mashaly, Maggie, El Saied, Ahmed, Alexan, Wassim, Khalifa, Abeer S..  2019.  A Multiple Layer Security Scheme Utilizing Information Matrices. 2019 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA). :284–289.
This paper proposes a double-layer message security scheme that is implemented in two stages. First, the secret data is encrypted using the AES algorithm with a 256-bit key. Second, least significant bit (LSB) embedding is carried out, by hiding the secret message into an image of an information matrix. A number of performance evaluation metrics are discussed and computed for the proposed scheme. The obtained results are compared to other schemes in literature and show the superiority of the proposed scheme.
2020-02-17
Dhanujalakshmi, R., Kartheeban, K..  2019.  Smart and Secure Group Communication in Iot Using Exponential Based Self Healing Group Key Distribution Protocol. 2019 IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS). :1–4.
The major role of Internet of Things is to gather and exchange large amount of data through wireless network. Unreliable wireless network creates insecure connections, so security is very much important in IoT. Self-healing group key distribution protocol can be used to mitigate security issues for unreliable wireless network. It improves communication efficiency. we can recover lost session keys using broadcast message by group members in place of group manager requiring missing key update messages to be transmitted. This study also illustrates about a new E-SGKD protocol that faces many secure problems and uses AES algorithm provides security properties with appropriate storage requirement. We have compromised session key retrieve time to reduce expenses for communication. Output of this paper and simulation is appeal to Zigbee network as it has drastic outcome in communication and storage, the results will be compared with the access polynomial self-healing protocol for analysis process.
2020-02-10
Majumdar, R., Gayen, P. K., Mondal, S., Sadhukhan, A., Das, P. K., Kushary, I..  2019.  A Cyber Communication Package in the Application of Grid Tied Solar System. 2019 Devices for Integrated Circuit (DevIC). :146–150.

In this paper, development of cyber communication package in the application of grid connected solar system has been presented. Here, implemented communication methodology supports communication process with reduced latency, high security arrangement with various degrees of freedom. Faithful transferring of various electrical data for the purpose of measurement, monitoring and controlling actions depend on the bidirectional communication strategy. Thus, real-time communication of data through cyber network has been emphasized in this paper. The C\# language based coding is done to develop the communication program. The notable features of proposed communication process are reduction of latency during data exchange by usage of advanced encryption standard (AES) algorithm, tightening of cyber security arrangement by implementing secured socket layer (SSL) and Rivest, Shamir and Adleman (RSA) algorithms. Various real-time experiments using internet connected computers have been done to verify the usability of the proposed communication concept along with its notable features in the application.

2020-01-20
Chawla, Nikhil, Singh, Arvind, Rahman, Nael Mizanur, Kar, Monodeep, Mukhopadhyay, Saibal.  2019.  Extracting Side-Channel Leakage from Round Unrolled Implementations of Lightweight Ciphers. 2019 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :31–40.

Energy efficiency and security is a critical requirement for computing at edge nodes. Unrolled architectures for lightweight cryptographic algorithms have been shown to be energy-efficient, providing higher performance while meeting resource constraints. Hardware implementations of unrolled datapaths have also been shown to be resistant to side channel analysis (SCA) attacks due to a reduction in signal-to-noise ratio (SNR) and an increased complexity in the leakage model. This paper demonstrates optimal leakage models and an improved CFA attack which makes it feasible to extract first-order side-channel leakages from combinational logic in the initial rounds of unrolled datapaths. Several leakage models, targeting initial rounds, are explored and 1-bit hamming weight (HW) based leakage model is shown to be an optimal choice. Additionally, multi-band narrow bandpass filtering techniques in conjunction with correlation frequency analysis (CFA) is demonstrated to improve SNR by up to 4×, attributed to the removal of the misalignment effect in combinational logics and signal isolation. The improved CFA attack is performed on side channel signatures acquired for 7-round unrolled SIMON datapaths, implemented on Sakura-G (XILINX spartan 6, 45nm) based FPGA platform and a 24× reduction in minimum-traces-to-disclose (MTD) for revealing 80% of the key bits is demonstrated with respect to conventional time domain correlation power analysis (CPA). Finally, the proposed method is successfully applied to a fully-unrolled datapath for PRINCE and a parallel round-based datapath for Advanced Encryption Standard (AES) algorithm to demonstrate its general applicability.

2018-06-20
Joshi, V. B., Goudar, R. H..  2017.  Intrusion detection systems in MANETs using hybrid techniques. 2017 International Conference On Smart Technologies For Smart Nation (SmartTechCon). :534–538.

The use of self organized wireless technologies called as Mobile Ad Hoc Networks (MANETs) has increased and these wireless devices can be deployed anywhere without any infrastructural support or without any base station, hence securing these networks and preventing from Intrusions is necessary. This paper describes a method for securing the MANETs using Hybrid cryptographic technique which uses RSA and AES algorithm along with SHA 256 Hashing technique. This hybrid cryptographic technique provides authentication to the data. To check whether there is any malicious node present, an Intrusion Detection system (IDS) technique called Enhanced Adaptive Acknowledgement (EAACK) is used, which checks for the acknowledgement packets to detect any malicious node present in the system. The routing of packets is done through two protocols AODV and ZRP and both the results are compared. The ZRP protocol when used for routing provides better performance as compared to AODV.

2015-05-05
Stanisavljevic, Z., Stanisavljevic, J., Vuletic, P., Jovanovic, Z..  2014.  COALA - System for Visual Representation of Cryptography Algorithms. Learning Technologies, IEEE Transactions on. 7:178-190.

Educational software systems have an increasingly significant presence in engineering sciences. They aim to improve students' attitudes and knowledge acquisition typically through visual representation and simulation of complex algorithms and mechanisms or hardware systems that are often not available to the educational institutions. This paper presents a novel software system for CryptOgraphic ALgorithm visuAl representation (COALA), which was developed to support a Data Security course at the School of Electrical Engineering, University of Belgrade. The system allows users to follow the execution of several complex algorithms (DES, AES, RSA, and Diffie-Hellman) on real world examples in a step by step detailed view with the possibility of forward and backward navigation. Benefits of the COALA system for students are observed through the increase of the percentage of students who passed the exam and the average grade on the exams during one school year.