Visible to the public Biblio

Filters: Keyword is Backtracking  [Clear All Filters]
2022-10-03
Liu, Yulin, Han, Guangjie, Wang, Hao, Jiang, Jinfang.  2021.  FPTSA-SLP: A Fake Packet Time Slot Assignment-based Source Location Privacy Protection Scheme in Underwater Acoustic Sensor Networks. 2021 Computing, Communications and IoT Applications (ComComAp). :307–311.
Nowadays, source location privacy in underwater acoustic sensor networks (UASNs) has gained a lot of attention. The aim of source location privacy is to use specific technologies to protect the location of the source from being compromised. Among the many technologies available are fake packet technology, multi-path routing technology and so on. The fake packet technology uses a certain amount of fake packets to mask the transmission of the source packet, affecting the adversary's efficiency of hop-by-hop backtracking to the source. However, during the operation of the fake packet technology, the fake packet, and the source packet may interfere with each other. Focus on this, a fake packet time slot assignment-based source location privacy protection (FPTSA-SLP) scheme. The time slot assignment is adopted to avoid interference with the source packet. Also, a relay node selection method based on the handshake is further proposed to increase the diversity of the routing path to confuse the adversary. Compared with the comparison algorithm, the simulation results demonstrate that the proposed scheme has a better performance in safety time.
Hu, Lingling, Liu, Liang, Liu, Yulei, Zhai, Wenbin, Wang, Xinmeng.  2021.  A robust fixed path-based routing scheme for protecting the source location privacy in WSNs. 2021 17th International Conference on Mobility, Sensing and Networking (MSN). :48–55.
With the development of wireless sensor networks (WSNs), WSNs have been widely used in various fields such as animal habitat detection, military surveillance, etc. This paper focuses on protecting the source location privacy (SLP) in WSNs. Existing algorithms perform poorly in non-uniform networks which are common in reality. In order to address the performance degradation problem of existing algorithms in non-uniform networks, this paper proposes a robust fixed path-based random routing scheme (RFRR), which guarantees the path diversity with certainty in non-uniform networks. In RFRR, the data packets are sent by selecting a routing path that is highly differentiated from each other, which effectively protects SLP and resists the backtracking attack. The experimental results show that RFRR increases the difficulty of the backtracking attack while safekeeping the balance between security and energy consumption.
2022-01-25
Wu, Qing, Li, Liangjun.  2021.  Ciphertext-Policy Attribute-Based Encryption for General Circuits in Cloud Computing. 2021 International Conference on Control, Automation and Information Sciences (ICCAIS). :620–625.
Driven by the development of Internet and information technology, cloud computing has been widely recognized and accepted by the public. However, with the occurrence of more and more information leakage, cloud security has also become one of the core problem of cloud computing. As one of the resolve methods of it, ciphertext-policy attribute-based encryption (CP-ABE) by embedding access policy into ciphertext can make data owner to decide which attributes can access ciphertext. It achieves ensuring data confidentiality with realizing fine-grained access control. However, the traditional access policy has some limitations. Compared with other access policies, the circuit-based access policy ABE supports more flexible access control to encrypted data. But there are still many challenges in the existing circuit-based access policy ABE, such as privacy leakage and low efficiency. Motivated by the above, a new circuit-based access policy ABE is proposed. By converting the multi output OR gates in monotonic circuit, the backtracking attacks in circuit access structure is avoided. In order to overcome the low efficiency issued by circuit conversion, outsourcing computing is adopted to Encryption/Decryption algorithms, which makes the computing overhead for data owners and users be decreased and achieve constant level. Security analysis shows that the scheme is secure under the decision bilinear Diffie-Hellman (DBDH) assumption. Numerical results show the proposed scheme has a higher computation efficiency than the other circuit-based schemes.
2022-01-11
Li, Xiaolong, Zhao, Tengteng, Zhang, Wei, Gan, Zhiqiang, Liu, Fugang.  2021.  A Visual Analysis Framework of Attack Paths Based on Network Traffic. 2021 IEEE International Conference on Power Electronics, Computer Applications (ICPECA). :232–237.
With the rapid development of the Internet, cyberspace security has become a potentially huge problem. At the same time, the disclosure of cyberspace vulnerabilities is getting faster and faster. Traditional protection methods based on known features cannot effectively defend against new network attacks. Network attack is no more a single vulnerability exploit, but an APT attack based on multiple complicated methods. Cyberspace attacks have become ``rationalized'' on the surface. Currently, there are a lot of researches about visualization of attack paths, but there is no an overall plan to reproduce the attack path. Most researches focus on the detection and characterization individual based on single behavior cyberspace attacks, which loose it's abilities to help security personnel understand the complete attack behavior of attackers. The key factors of this paper is to collect the attackers' aggressive behavior by reverse retrospective method based on the actual shooting range environment. By finding attack nodes and dividing offensive behavior into time series, we can characterize the attacker's behavior path vividly and comprehensively.
2021-04-27
Gui, J., Li, D., Chen, Z., Rhee, J., Xiao, X., Zhang, M., Jee, K., Li, Z., Chen, H..  2020.  APTrace: A Responsive System for Agile Enterprise Level Causality Analysis. 2020 IEEE 36th International Conference on Data Engineering (ICDE). :1701–1712.
While backtracking analysis has been successful in assisting the investigation of complex security attacks, it faces a critical dependency explosion problem. To address this problem, security analysts currently need to tune backtracking analysis manually with different case-specific heuristics. However, existing systems fail to fulfill two important system requirements to achieve effective backtracking analysis. First, there need flexible abstractions to express various types of heuristics. Second, the system needs to be responsive in providing updates so that the progress of backtracking analysis can be frequently inspected, which typically involves multiple rounds of manual tuning. In this paper, we propose a novel system, APTrace, to meet both of the above requirements. As we demonstrate in the evaluation, security analysts can effectively express heuristics to reduce more than 99.5% of irrelevant events in the backtracking analysis of real-world attack cases. To improve the responsiveness of backtracking analysis, we present a novel execution-window partitioning algorithm that significantly reduces the waiting time between two consecutive updates (especially, 57 times reduction for the top 1% waiting time).