Visible to the public Biblio

Filters: Keyword is threat detection  [Clear All Filters]
2023-06-09
Wang, Shuangbao Paul, Arafin, Md Tanvir, Osuagwu, Onyema, Wandji, Ketchiozo.  2022.  Cyber Threat Analysis and Trustworthy Artificial Intelligence. 2022 6th International Conference on Cryptography, Security and Privacy (CSP). :86—90.
Cyber threats can cause severe damage to computing infrastructure and systems as well as data breaches that make sensitive data vulnerable to attackers and adversaries. It is therefore imperative to discover those threats and stop them before bad actors penetrating into the information systems.Threats hunting algorithms based on machine learning have shown great advantage over classical methods. Reinforcement learning models are getting more accurate for identifying not only signature-based but also behavior-based threats. Quantum mechanics brings a new dimension in improving classification speed with exponential advantage. The accuracy of the AI/ML algorithms could be affected by many factors, from algorithm, data, to prejudicial, or even intentional. As a result, AI/ML applications need to be non-biased and trustworthy.In this research, we developed a machine learning-based cyber threat detection and assessment tool. It uses two-stage (both unsupervised and supervised learning) analyzing method on 822,226 log data recorded from a web server on AWS cloud. The results show the algorithm has the ability to identify the threats with high confidence.
2022-04-18
Ahmadian, Saeed, Ebrahimi, Saba, Malki, Heidar.  2021.  Cyber-Security Enhancement of Smart Grid's Substation Using Object's Distance Estimation in Surveillance Cameras. 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC). :0631–0636.
Cyber-attacks toward cyber-physical systems are one of the main concerns of smart grid's operators. However, many of these cyber-attacks, are toward unmanned substations where the cyber-attackers needs to be close enough to substation to malfunction protection and control systems in substations, using Electromagnetic signals. Therefore, in this paper, a new threat detection algorithm is proposed to prevent possible cyber-attacks toward unmanned substations. Using surveillance camera's streams and based on You Only Look Once (YOLO) V3, suspicious objects in the image are detected. Then, using Intersection over Union (IOU) and Generalized Intersection Over Union (GIOU), threat distance is estimated. Finally, the estimated threats are categorized into three categories using color codes red, orange and green. The deep network used for detection consists of 106 convolutional layers and three output prediction with different resolutions for different distances. The pre-trained network is transferred from Darknet-53 weights trained on 80 classes.
2021-08-12
Karie, Nickson M., Sahri, Nor Masri, Haskell-Dowland, Paul.  2020.  IoT Threat Detection Advances, Challenges and Future Directions. 2020 Workshop on Emerging Technologies for Security in IoT (ETSecIoT). :22—29.
It is predicted that, the number of connected Internet of Things (IoT) devices will rise to 38.6 billion by 2025 and an estimated 50 billion by 2030. The increased deployment of IoT devices into diverse areas of our life has provided us with significant benefits such as improved quality of life and task automation. However, each time a new IoT device is deployed, new and unique security threats emerge or are introduced into the environment under which the device must operate. Instantaneous detection and mitigation of every security threat introduced by different IoT devices deployed can be very challenging. This is because many of the IoT devices are manufactured with no consideration of their security implications. In this paper therefore, we review existing literature and present IoT threat detection research advances with a focus on the various IoT security challenges as well as the current developments towards combating cyber security threats in IoT networks. However, this paper also highlights several future research directions in the IoT domain.
2021-04-27
Saganowski, S..  2020.  A Three-Stage Machine Learning Network Security Solution for Public Entities. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1097–1104.
In the era of universal digitization, ensuring network and data security is extremely important. As a part of the Regional Center for Cybersecurity initiative, a three-stage machine learning network security solution is being developed and will be deployed in March 2021. The solution consists of prevention, monitoring, and curation stages. As prevention, we utilize Natural Language Processing to extract the security-related information from social media, news portals, and darknet. A deep learning architecture is used to monitor the network in real-time and detect any abnormal traffic. A combination of regular expressions, pattern recognition, and heuristics are applied to the abuse reports to automatically identify intrusions that passed other security solutions. The lessons learned from the ongoing development of the system, alongside the results, extensive analysis, and discussion is provided. Additionally, a cybersecurity-related corpus is described and published within this work.
2021-01-22
Sahabandu, D., Allen, J., Moothedath, S., Bushnell, L., Lee, W., Poovendran, R..  2020.  Quickest Detection of Advanced Persistent Threats: A Semi-Markov Game Approach. 2020 ACM/IEEE 11th International Conference on Cyber-Physical Systems (ICCPS). :9—19.
Advanced Persistent Threats (APTs) are stealthy, sophisticated, long-term, multi-stage attacks that threaten the security of sensitive information. Dynamic Information Flow Tracking (DIFT) has been proposed as a promising mechanism to detect and prevent various cyber attacks in computer systems. DIFT tracks suspicious information flows in the system and generates security analysis when anomalous behavior is detected. The number of information flows in a system is typically large and the amount of resources (such as memory, processing power and storage) required for analyzing different flows at different system locations varies. Hence, efficient use of resources is essential to maintain an acceptable level of system performance when using DIFT. On the other hand, the quickest detection of APTs is crucial as APTs are persistent and the damage caused to the system is more when the attacker spends more time in the system. We address the problem of detecting APTs and model the trade-off between resource efficiency and quickest detection of APTs. We propose a game model that captures the interaction of APT and a DIFT-based defender as a two-player, multi-stage, zero-sum, Stackelberg semi-Markov game. Our game considers the performance parameters such as false-negatives generated by DIFT and the time required for executing various operations in the system. We propose a two-time scale Q-learning algorithm that converges to a Stackelberg equilibrium under infinite horizon, limiting average payoff criteria. We validate our model and algorithm on a real-word attack dataset obtained using Refinable Attack INvestigation (RAIN) framework.
2020-08-24
Torkura, Kennedy A., Sukmana, Muhammad I.H., Cheng, Feng, Meinel, Christoph.  2019.  SlingShot - Automated Threat Detection and Incident Response in Multi Cloud Storage Systems. 2019 IEEE 18th International Symposium on Network Computing and Applications (NCA). :1–5.
Cyber-attacks against cloud storage infrastructure e.g. Amazon S3 and Google Cloud Storage, have increased in recent years. One reason for this development is the rising adoption of cloud storage for various purposes. Robust counter-measures are therefore required to tackle these attacks especially as traditional techniques are not appropriate for the evolving attacks. We propose a two-pronged approach to address these challenges in this paper. The first approach involves dynamic snapshotting and recovery strategies to detect and partially neutralize security events. The second approach builds on the initial step by automatically correlating the generated alerts with cloud event log, to extract actionable intelligence for incident response. Thus, malicious activities are investigated, identified and eliminated. This approach is implemented in SlingShot, a cloud threat detection and incident response system which extends our earlier work - CSBAuditor, which implements the first step. The proposed techniques work together in near real time to mitigate the aforementioned security issues on Amazon Web Services (AWS) and Google Cloud Platform (GCP). We evaluated our techniques using real cloud attacks implemented with static and dynamic methods. The average Mean Time to Detect is 30 seconds for both providers, while the Mean Time to Respond is 25 minutes and 90 minutes for AWS and GCP respectively. Thus, our proposal effectively tackles contemporary cloud attacks.
2020-05-08
Dionísio, Nuno, Alves, Fernando, Ferreira, Pedro M., Bessani, Alysson.  2019.  Cyberthreat Detection from Twitter using Deep Neural Networks. 2019 International Joint Conference on Neural Networks (IJCNN). :1—8.

To be prepared against cyberattacks, most organizations resort to security information and event management systems to monitor their infrastructures. These systems depend on the timeliness and relevance of the latest updates, patches and threats provided by cyberthreat intelligence feeds. Open source intelligence platforms, namely social media networks such as Twitter, are capable of aggregating a vast amount of cybersecurity-related sources. To process such information streams, we require scalable and efficient tools capable of identifying and summarizing relevant information for specified assets. This paper presents the processing pipeline of a novel tool that uses deep neural networks to process cybersecurity information received from Twitter. A convolutional neural network identifies tweets containing security-related information relevant to assets in an IT infrastructure. Then, a bidirectional long short-term memory network extracts named entities from these tweets to form a security alert or to fill an indicator of compromise. The proposed pipeline achieves an average 94% true positive rate and 91% true negative rate for the classification task and an average F1-score of 92% for the named entity recognition task, across three case study infrastructures.

2020-04-17
Almousa, May, Anwar, Mohd.  2019.  Detecting Exploit Websites Using Browser-based Predictive Analytics. 2019 17th International Conference on Privacy, Security and Trust (PST). :1—3.
The popularity of Web-based computing has given increase to browser-based cyberattacks. These cyberattacks use websites that exploit various web browser vulnerabilities. To help regular users avoid exploit websites and engage in safe online activities, we propose a methodology of building a machine learning-powered predictive analytical model that will measure the risk of attacks and privacy breaches associated with visiting different websites and performing online activities using web browsers. The model will learn risk levels from historical data and metadata scraped from web browsers.
2020-02-17
Facon, Adrien, Guilley, Sylvain, Ngo, Xuan-Thuy, Perianin, Thomas.  2019.  Hardware-enabled AI for Embedded Security: A New Paradigm. 2019 3rd International Conference on Recent Advances in Signal Processing, Telecommunications Computing (SigTelCom). :80–84.

As chips become more and more connected, they are more exposed (both to network and to physical attacks). Therefore one shall ensure they enjoy a sufficient protection level. Security within chips is accordingly becoming a hot topic. Incident detection and reporting is one novel function expected from chips. In this talk, we explain why it is worthwhile to resort to Artificial Intelligence (AI) for security event handling. Drivers are the need to aggregate multiple and heterogeneous security sensors, the need to digest this information quickly to produce exploitable information, and so while maintaining a low false positive detection rate. Key features are adequate learning procedures and fast and secure classification accelerated by hardware. A challenge is to embed such security-oriented AI logic, while not compromising chip power budget and silicon area. This talk accounts for the opportunities permitted by the symbiotic encounter between chip security and AI.

2019-12-16
McDermott, Christopher D., Jeannelle, Bastien, Isaacs, John P..  2019.  Towards a Conversational Agent for Threat Detection in the Internet of Things. 2019 International Conference on Cyber Situational Awareness, Data Analytics And Assessment (Cyber SA). :1–8.

A conversational agent to detect anomalous traffic in consumer IoT networks is presented. The agent accepts two inputs in the form of user speech received by Amazon Alexa enabled devices, and classified IDS logs stored in a DynamoDB Table. Aural analysis is used to query the database of network traffic, and respond accordingly. In doing so, this paper presents a solution to the problem of making consumers situationally aware when their IoT devices are infected, and anomalous traffic has been detected. The proposed conversational agent addresses the issue of how to present network information to non-technical users, for better comprehension, and improves awareness of threats derived from the mirai botnet malware.

2018-04-11
Meyer, Philipp, Hiesgen, Raphael, Schmidt, Thomas C., Nawrocki, Marcin, Wählisch, Matthias.  2017.  Towards Distributed Threat Intelligence in Real-Time. Proceedings of the SIGCOMM Posters and Demos. :76–78.

In this demo, we address the problem of detecting anomalies on the Internet backbone in near real-time. Many of today's incidents may only become visible from inspecting multiple data sources and by considering multiple vantage points simultaneously. We present a setup based on the distributed forensic platform VAST that was extended to import various data streams from passive measurements and incident reporting at multiple locations, and perform an effective correlation analysis shortly after the data becomes exposed to our queries.

2017-12-20
Heartfield, R., Loukas, G., Gan, D..  2017.  An eye for deception: A case study in utilizing the human-as-a-security-sensor paradigm to detect zero-day semantic social engineering attacks. 2017 IEEE 15th International Conference on Software Engineering Research, Management and Applications (SERA). :371–378.

In a number of information security scenarios, human beings can be better than technical security measures at detecting threats. This is particularly the case when a threat is based on deception of the user rather than exploitation of a specific technical flaw, as is the case of spear-phishing, application spoofing, multimedia masquerading and other semantic social engineering attacks. Here, we put the concept of the human-as-a-security-sensor to the test with a first case study on a small number of participants subjected to different attacks in a controlled laboratory environment and provided with a mechanism to report these attacks if they spot them. A key challenge is to estimate the reliability of each report, which we address with a machine learning approach. For comparison, we evaluate the ability of known technical security countermeasures in detecting the same threats. This initial proof of concept study shows that the concept is viable.

2017-09-05
Sisiaridis, Dimitrios, Carcillo, Fabrizio, Markowitch, Olivier.  2016.  A Framework for Threat Detection in Communication Systems. Proceedings of the 20th Pan-Hellenic Conference on Informatics. :68:1–68:6.

We propose a modular framework which deploys state-of-the art techniques in dynamic pattern matching as well as machine learning algorithms for Big Data predictive and be-havioural analytics to detect threats and attacks in Managed File Transfer and collaboration platforms. We leverage the use of the kill chain model by looking for indicators of compromise either for long-term attacks as Advanced Persistent Threats, zero-day attacks or DDoS attacks. The proposed engine can act complimentary to existing security services as SIEMs, IDS, IPS and firewalls.

2015-05-05
Kumar, S., Rama Krishna, C., Aggarwal, N., Sehgal, R., Chamotra, S..  2014.  Malicious data classification using structural information and behavioral specifications in executables. Engineering and Computational Sciences (RAECS), 2014 Recent Advances in. :1-6.

With the rise in the underground Internet economy, automated malicious programs popularly known as malwares have become a major threat to computers and information systems connected to the internet. Properties such as self healing, self hiding and ability to deceive the security devices make these software hard to detect and mitigate. Therefore, the detection and the mitigation of such malicious software is a major challenge for researchers and security personals. The conventional systems for the detection and mitigation of such threats are mostly signature based systems. Major drawback of such systems are their inability to detect malware samples for which there is no signature available in their signature database. Such malwares are known as zero day malware. Moreover, more and more malware writers uses obfuscation technology such as polymorphic and metamorphic, packing, encryption, to avoid being detected by antivirus. Therefore, the traditional signature based detection system is neither effective nor efficient for the detection of zero-day malware. Hence to improve the effectiveness and efficiency of malware detection system we are using classification method based on structural information and behavioral specifications. In this paper we have used both static and dynamic analysis approaches. In static analysis we are extracting the features of an executable file followed by classification. In dynamic analysis we are taking the traces of executable files using NtTrace within controlled atmosphere. Experimental results obtained from our algorithm indicate that our proposed algorithm is effective in extracting malicious behavior of executables. Further it can also be used to detect malware variants.