Visible to the public Biblio

Filters: Keyword is Feature  [Clear All Filters]
2021-08-31
Manavi, Farnoush, Hamzeh, Ali.  2020.  A New Method for Ransomware Detection Based on PE Header Using Convolutional Neural Networks. 2020 17th International ISC Conference on Information Security and Cryptology (ISCISC). :82–87.
With the spread of information technology in human life, data protection is a critical task. On the other hand, malicious programs are developed, which can manipulate sensitive and critical data and restrict access to this data. Ransomware is an example of such a malicious program that encrypts data, restricts users' access to the system or their data, and then request a ransom payment. Many types of research have been proposed for ransomware detection. Most of these methods attempt to identify ransomware by relying on program behavior during execution. The main weakness of these methods is that it is not clear how long the program should be monitored to show its real behavior. Therefore, sometimes, these researches cannot early detect ransomware. In this paper, a new method for ransomware detection is proposed that does not require running the program and uses the PE header of the executable files. To extract effective features from the PE header files, an image based on PE header is constructed. Then, according to the advantages of Convolutional Neural Networks in extracting features from images and classifying them, CNN is used. The proposed method achieves 93.33% accuracy. Our results indicate the usefulness and practicality method for ransomware detection.
2021-06-24
ManiArasuSekar, KannanMani S., Swaminathan, Paveethran, Murali, Ritwik, Ratan, Govind K., Siva, Surya V..  2020.  Optimal Feature Selection for Non-Network Malware Classification. 2020 International Conference on Inventive Computation Technologies (ICICT). :82—87.
In this digital age, almost every system and service has moved from a localized to a digital environment. Consequently the number of attacks targeting both personal as well as commercial digital devices has also increased exponentially. In most cases specific malware attacks have caused widespread damage and emotional anguish. Though there are automated techniques to analyse and thwart such attacks, they are still far from perfect. This paper identifies optimal features, which improves the accuracy and efficiency of the classification process, required for malware classification in an attempt to assist automated anti-malware systems identify and block malware families in an attempt to secure the end user and reduce the damage caused by these malicious software.