Biblio
Filters: Keyword is hping3 [Clear All Filters]
Behaviour Analysis of Open-Source Firewalls Under Security Crisis. 2022 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET). :105—109.
.
2022. Nowadays, in this COVID era, work from home is quietly more preferred than work from the office. Due to this, the need for a firewall has been increased day by day. Every organization uses the firewall to secure their network and create VPN servers to allow their employees to work from home. Due to this, the security of the firewall plays a crucial role. In this paper, we have compared the two most popular open-source firewalls named pfSense and OPNSense. We have examined the security they provide by default without any other attachment. To do this, we performed four different attacks on the firewalls and compared the results. As a result, we have observed that both provide the same security still pfSense has a slight edge when an attacker tries to perform a Brute force attack over OPNSense.
IANVS: A Moving Target Defense Framework for a Resilient Internet of Things. 2020 IEEE Symposium on Computers and Communications (ISCC). :1—6.
.
2020. The Internet of Things (IoT) is more and more present in fundamental aspects of our societies and personal life. Billions of objects now have access to the Internet. This networking capability allows for new beneficial services and applications. However, it is also the entry-point for a wide variety of cyber-attacks that target these devices. The security measures present in real IoT systems lag behind those of the standard Internet. Security is sometimes completely absent. Moving Target Defense (MTD) is a 10-year-old cyber-defense paradigm. It proposes to randomize components of a system. Reasonably, an attacker will have a higher cost attacking an MTD-version of a system compared with a static-version of it. Even if MTD has been successfully applied to standard systems, its deployment for IoT is still lacking. In this paper, we propose a generic MTD framework suitable for IoT systems: IANVS (pronounced Janus). Our framework has a modular design. Its components can be adapted according to the specific constraints and requirements of a particular IoT system. We use it to instantiate two concrete MTD strategies. One that targets the UDP port numbers (port-hopping), and another a CoAP resource URI. We implement our proposal on real hardware using Pycom LoPy4 nodes. We expose the nodes to a remote Denial-of-Service attack and evaluate the effectiveness of the IANVS-based port-hopping MTD proposal.