Biblio
Though the deep penetration of cyber systems across the smart grid sub-domains enrich the operation of the wide-area protection, control, and smart grid applications, the stochastic nature of cyber-attacks by adversaries inflict their performance and the system operation. Various hardware-in-the-loop (HIL) cyber-physical system (CPS) testbeds have attempted to evaluate the cyberattack dynamics and power system perturbations for robust wide-area protection algorithms. However, physical resource constraints and modular integration designs have been significant barriers while modeling large-scale grid models (scalability) and have limited many of the CPS testbeds to either small-scale HIL environment or complete simulation environments. This paper proposes a meticulous design and efficient modeling of IEC-61850 logical nodes in physical relays to simulate large-scale grid models in a HIL real-time digital simulator environment integrated with industry-grade hardware and software systems for wide-area power system applications. The proposed meticulous design includes multi-breaker emulation in the physical relays, which extends the capacity of a physical relay to accommodate more number of CPS interfaces in the HIL CPS security testbed environment. We have used our existing HIL CPS security testbed to demonstrate scalability by the real-time performance of ten simultaneous IEEE-39 CPS grid models. The experiments demonstrated significant results by 100% real-time performance with zero overruns, and low latency while receiving and executing control signals from physical SEL relays via IEC-61850 and DNP-3 protocols to real-time digital simulator, substation remote terminal unit (RTU) software and supervisory control and data acquisition (SCADA) software at control center.
The Automation industries that uses Supervisory Control and Data Acquisition (SCADA) systems are highly vulnerable for Network threats. Systems that are air-gapped and isolated from the internet are highly affected due to insider attacks like Spoofing, DOS and Malware threats that affects confidentiality, integrity and availability of Operational Technology (OT) system elements and degrade its performance even though security measures are taken. In this paper, a behavior-based intrusion prevention system (IPS) is designed for OT networks. The proposed system is implemented on SCADA test bed with two systems replicates automation scenarios in industry. This paper describes 4 main classes of cyber-attacks with their subclasses against SCADA systems and methodology with design of components of IPS system, database creation, Baselines and deployment of system in environment. IPS system identifies not only IT protocols but also Industry Control System (ICS) protocols Modbus and DNP3 with their inside communication fields using deep packet inspection (DPI). The analytical results show 99.89% accuracy on binary classification and 97.95% accuracy on multiclass classification of different attack vectors performed on network with low false positive rate. These results are also validated by actual deployment of IPS in SCADA systems with the prevention of DOS attack.
When SCADA systems are exposed to public networks, attackers can more easily penetrate the control systems that operate electrical power grids, water plants, and other critical infrastructures. To detect such attacks, SCADA systems require an intrusion detection technique that can understand the information carried by their usually proprietary network protocols.
To achieve that goal, we propose to attach to SCADA systems a specification-based intrusion detection framework based on Bro [7][8], a runtime network traffic analyzer. We have built a parser in Bro to support DNP3, a network protocol widely used in SCADA systems that operate electrical power grids. This built-in parser provides a clear view of all network events related to SCADA systems. Consequently, security policies to analyze SCADA-specific semantics related to the network events can be accurately defined. As a proof of concept, we specify a protocol validation policy to verify that the semantics of the data extracted from network packets conform to protocol definitions. We performed an experimental evaluation to study the processing capabilities of the proposed intrusion detection framework.
Critical Infrastructure represents the basic facilities, services and installations necessary for functioning of a community, such as water, power lines, transportation, or communication systems. Any act or practice that causes a real-time Critical Infrastructure System to impair its normal function and performance will have debilitating impact on security and economy, with direct implication on the society. SCADA (Supervisory Control and Data Acquisition) system is a control system which is widely used in Critical Infrastructure System to monitor and control industrial processes autonomously. As SCADA architecture relies on computers, networks, applications and programmable controllers, it is more vulnerable to security threats/attacks. Traditional SCADA communication protocols such as IEC 60870, DNP3, IEC 61850, or Modbus did not provide any security services. Newer standards such as IEC 62351 and AGA-12 offer security features to handle the attacks on SCADA system. However there are performance issues with the cryptographic solutions of these specifications when applied to SCADA systems. This research is aimed at improving the performance of SCADA security standards by employing NTRU, a faster and light-weight NTRU public key algorithm for providing end-to-end security.
A system implementing real-time situational awareness through discovery, prevention, detection, response, audit, and management capabilities is seen as central to facilitating the protection of critical infrastructure systems. The effectiveness of providing such awareness technologies for electrical distribution companies is being evaluated in a series of field trials: (i) Substation Intrusion Detection / Prevention System (IDPS) and (ii) Security Information and Event Management (SIEM) System. These trials will help create a realistic case study on the effectiveness of such technologies with the view of forming a framework for critical infrastructure cyber security defense systems of the future.