Visible to the public Biblio

Filters: Keyword is experimentation  [Clear All Filters]
2018-06-11
Atighetchi, Michael, Yaman, Fusun, Last, David, Paltzer, Captain Nicholas, Caiazzo, Meghan, Raio, Stephen.  2017.  A Flexible Approach Towards Security Validation. Proceedings of the 2017 Workshop on Automated Decision Making for Active Cyber Defense. :7–13.
Validating security properties of complex distributed systems is a challenging problem by itself, let alone when the work needs to be performed under tight budget and time constraints on prototype systems with components at various maturity levels. This paper described a tailored approach to security evaluations involving a strategic combination of model-based quantification, emulation, and logical argumentation. By customizing the evaluation to fit existing budget and timelines, validators can achieve the most appropriate validation process, trading off fidelity with coverage across a number of different defense components and different maturity levels. We successfully applied this process to the validation of an overlay proxy network, analyzing the impact of five different defense attributes (together with combinations thereof) on access path establishment and anonymity.
2017-09-15
Dhulipala, Laxman, Kabiljo, Igor, Karrer, Brian, Ottaviano, Giuseppe, Pupyrev, Sergey, Shalita, Alon.  2016.  Compressing Graphs and Indexes with Recursive Graph Bisection. Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. :1535–1544.

Graph reordering is a powerful technique to increase the locality of the representations of graphs, which can be helpful in several applications. We study how the technique can be used to improve compression of graphs and inverted indexes. We extend the recent theoretical model of Chierichetti et al. (KDD 2009) for graph compression, and show how it can be employed for compression-friendly reordering of social networks and web graphs and for assigning document identifiers in inverted indexes. We design and implement a novel theoretically sound reordering algorithm that is based on recursive graph bisection. Our experiments show a significant improvement of the compression rate of graph and indexes over existing heuristics. The new method is relatively simple and allows efficient parallel and distributed implementations, which is demonstrated on graphs with billions of vertices and hundreds of billions of edges.

2017-04-24
Roegiest, Adam, Cormack, Gordon V..  2016.  An Architecture for Privacy-Preserving and Replicable High-Recall Retrieval Experiments. Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval. :1085–1088.

We demonstrate the infrastructure used in the TREC 2015 Total Recall track to facilitate controlled simulation of "assessor in the loop" high-recall retrieval experimentation. The implementation and corresponding design decisions are presented for this platform. This includes the necessary considerations to ensure that experiments are privacy-preserving when using test collections that cannot be distributed. Furthermore, we describe the use of virtual machines as a means of system submission in order to to promote replicable experiments while also ensuring the security of system developers and data providers.

Multari, Nicholas J., Singhal, Anoop, Manz, David O., Cowles, Robert, Cuellar, Jorge, Oehmen, Christopher, Shannon, Gregory.  2016.  SafeConfig'16: Testing and Evaluation for Active & Resilient Cyber Systems Panel Verification of Active and Resilient Systems: Practical or Utopian? Proceedings of the 2016 ACM Workshop on Automated Decision Making for Active Cyber Defense. :53–53.

The premise of the SafeConfig'16 Workshop is existing tools and methods for security assessments are necessary but insufficient for scientifically rigorous testing and evaluation of resilient and active cyber systems. The objective for this workshop is the exploration and discussion of scientifically sound testing regimen(s) that will continuously and dynamically probe, attack, and "test" the various resilient and active technologies. This adaptation and change in focus necessitates at the very least modification, and potentially, wholesale new developments to ensure that resilient- and agile-aware security testing is available to the research community. All testing, validation and experimentation must also be repeatable, reproducible, subject to scientific scrutiny, measurable and meaningful to both researchers and practitioners. The workshop will convene a panel of experts to explore this concept. The topic will be discussed from three different perspectives. One perspective is that of the practitioner. We will explore whether active and resilient technologies are or are planned for deployment and whether the verification methodology affects that decision. The second perspective will be that of the research community. We will address the shortcomings of current approaches and the research directions needed to address the practitioner's concerns. The third perspective is that of the policy community. Specifically, we will explore the dynamics between technology, verification, and policy.

2017-04-03
Taylor, Joshua, Zaffarano, Kara, Koller, Ben, Bancroft, Charlie, Syversen, Jason.  2016.  Automated Effectiveness Evaluation of Moving Target Defenses: Metrics for Missions and Attacks. Proceedings of the 2016 ACM Workshop on Moving Target Defense. :129–134.

In this paper, we describe the results of several experiments designed to test two dynamic network moving target defenses against a propagating data exfiltration attack. We designed a collection of metrics to assess the costs to mission activities and the benefits in the face of attacks and evaluated the impacts of the moving target defenses in both areas. Experiments leveraged Siege's Cyber-Quantification Framework to automatically provision the networks used in the experiment, install the two moving target defenses, collect data, and analyze the results. We identify areas in which the costs and benefits of the two moving target defenses differ, and note some of their unique performance characteristics.

2015-05-05
Hussain, A., Faber, T., Braden, R., Benzel, T., Yardley, T., Jones, J., Nicol, D.M., Sanders, W.H., Edgar, T.W., Carroll, T.E. et al..  2014.  Enabling Collaborative Research for Security and Resiliency of Energy Cyber Physical Systems. Distributed Computing in Sensor Systems (DCOSS), 2014 IEEE International Conference on. :358-360.

The University of Illinois at Urbana Champaign (Illinois), Pacific Northwest National Labs (PNNL), and the University of Southern California Information Sciences Institute (USC-ISI) consortium is working toward providing tools and expertise to enable collaborative research to improve security and resiliency of cyber physical systems. In this extended abstract we discuss the challenges and the solution space. We demonstrate the feasibility of some of the proposed components through a wide-area situational awareness experiment for the power grid across the three sites.