Biblio
This work proposes a novel approach to infer and characterize Internet-scale DNS amplification DDoS attacks by leveraging the darknet space. Complementary to the pioneer work on inferring Distributed Denial of Service (DDoS) using darknet, this work shows that we can extract DDoS activities without relying on backscattered analysis. The aim of this work is to extract cyber security intelligence related to DNS Amplification DDoS activities such as detection period, attack duration, intensity, packet size, rate and geo- location in addition to various network-layer and flow-based insights. To achieve this task, the proposed approach exploits certain DDoS parameters to detect the attacks. We empirically evaluate the proposed approach using 720 GB of real darknet data collected from a /13 address space during a recent three months period. Our analysis reveals that the approach was successful in inferring significant DNS amplification DDoS activities including the recent prominent attack that targeted one of the largest anti-spam organizations. Moreover, the analysis disclosed the mechanism of such DNS amplification DDoS attacks. Further, the results uncover high-speed and stealthy attempts that were never previously documented. The case study of the largest DDoS attack in history lead to a better understanding of the nature and scale of this threat and can generate inferences that could contribute in detecting, preventing, assessing, mitigating and even attributing of DNS amplification DDoS activities.
The Internet is vulnerable to bandwidth distributed denial-of-service (BW-DDoS) attacks, wherein many hosts send a huge number of packets to cause congestion and disrupt legitimate traffic. So far, BW-DDoS attacks have employed relatively crude, inefficient, brute force mechanisms; future attacks might be significantly more effective and harmful. To meet the increasing threats, we must deploy more advanced defenses.
The shrew distributed denial of service (DDoS) attack is very detrimental for many applications, since it can throttle TCP flows to a small fraction of their ideal rate at very low attack cost. Earlier works mainly focused on empirical studies of defending against the shrew DDoS, and very few of them provided analytic results about the attack itself. In this paper, we propose a mathematical model for estimating attack effect of this stealthy type of DDoS. By originally capturing the adjustment behaviors of victim TCPs congestion window, our model can comprehensively evaluate the combined impact of attack pattern (i.e., how the attack is configured) and network environment on attack effect (the existing models failed to consider the impact of network environment). Henceforth, our model has higher accuracy over a wider range of network environments. The relative error of our model remains around 10% for most attack patterns and network environments, whereas the relative error of the benchmark model in previous works has a mean value of 69.57%, and it could be more than 180% in some cases. More importantly, our model reveals some novel properties of the shrew attack from the interaction between attack pattern and network environment, such as the minimum cost formula to launch a successful attack, and the maximum effect formula of a shrew attack. With them, we are able to find out how to adaptively tune the attack parameters (e.g., the DoS burst length) to improve its attack effect in a given network environment, and how to reconfigure the network resource (e.g., the bottleneck buffer size) to mitigate the shrew DDoS with a given attack pattern. Finally, based on our theoretical results, we put forward a simple strategy to defend the shrew attack. The simulation results indicate that this strategy can remarkably increase TCP throughput by nearly half of the bottleneck bandwidth (and can be higher) for general attack patterns.
The goal of this letter is to explore the extent to which the vulnerabilities plaguing the Internet, particularly susceptibility to distributed denial-of-service (DDoS) attacks, impact the Cloud. DDoS has been known to disrupt Cloud services, but could it do worse by permanently damaging server and switch hardware? Services are hosted in data centers with thousands of servers generating large amounts of heat. Heating, ventilation, and air-conditioning (HVAC) systems prevent server downtime due to overheating. These are remotely managed using network management protocols that are susceptible to network attacks. Recently, Cloud providers have experienced outages due to HVAC malfunctions. Our contributions include a network simulation to study the feasibility of such an attack motivated by our experiences of such a security incident in a real data center. It demonstrates how a network simulator can study the interplay of the communication and thermal properties of a network and help prevent the Cloud provider's worst nightmare: meltdown of the data center as a result of a DDoS attack.
Distributed Denial of Service (DDoS) attacks are one of the most important threads in network systems. Due to the distributed nature, DDoS attacks are very hard to detect, while they also have the destructive potential of classical denial of service attacks. In this study, a novel 2-step system is proposed for the detection of DDoS attacks. In the first step an anomaly detection is performed on the destination IP traffic. If an anomaly is detected on the network, the system proceeds into the second step where a decision on every user is made due to the behaviour models. Hence, it is possible to detect attacks in the network that diverges from users' behavior model.
Distributed Denial of Service (DDoS) attacks are one of the challenging network security problems to address. The existing defense mechanisms against DDoS attacks usually filter the attack traffic at the victim side. The problem is exacerbated when there are spoofed IP addresses in the attack packets. In this case, even if the attacking traffic can be filtered by the victim, the attacker may reach the goal of blocking the access to the victim by consuming the computing resources or by consuming a big portion of the bandwidth to the victim. This paper proposes a Trace back-based Defense against DDoS Flooding Attacks (TDFA) approach to counter this problem. TDFA consists of three main components: Detection, Trace back, and Traffic Control. In this approach, the goal is to place the packet filtering as close to the attack source as possible. In doing so, the traffic control component at the victim side aims to set up a limit on the packet forwarding rate to the victim. This mechanism effectively reduces the rate of forwarding the attack packets and therefore improves the throughput of the legitimate traffic. Our results based on real world data sets show that TDFA is effective to reduce the attack traffic and to defend the quality of service for the legitimate traffic.
Networked control systems consist of distributed sensors and actuators that communicate via a wireless network. The use of an open wireless medium and unattended deployment leaves these systems vulnerable to intelligent adversaries whose goal is to disrupt the system performance. In this paper, we study the wormhole attack on a networked control system, in which an adversary establishes a link between two geographically distant regions of the network by using either high-gain antennas, as in the out-of-band wormhole, or colluding network nodes as in the in-band wormhole. Wormholes allow the adversary to violate the timing constraints of real-time control systems by first creating low-latency links, which attract network traffic, and then delaying or dropping packets. Since the wormhole attack reroutes and replays valid messages, it cannot be detected using cryptographic mechanisms alone. We study the impact of the wormhole attack on the network flows and delays and introduce a passivity-based control-theoretic framework for modeling and mitigating the wormhole attack. We develop this framework for both the in-band and out-of-band wormhole attacks as well as complex, hereto-unreported wormhole attacks consisting of arbitrary combinations of in-and out-of band wormholes. By integrating existing mitigation strategies into our framework, we analyze the throughput, delay, and stability properties of the overall system. Through simulation study, we show that, by selectively dropping control packets, the wormhole attack can cause disturbances in the physical plant of a networked control system, and demonstrate that appropriate selection of detection parameters mitigates the disturbances due to the wormhole while satisfying the delay constraints of the physical system.
Networked control systems consist of distributed sensors and actuators that communicate via a wireless network. The use of an open wireless medium and unattended deployment leaves these systems vulnerable to intelligent adversaries whose goal is to disrupt the system performance. In this paper, we study the wormhole attack on a networked control system, in which an adversary establishes a link between two geographically distant regions of the network by using either high-gain antennas, as in the out-of-band wormhole, or colluding network nodes as in the in-band wormhole. Wormholes allow the adversary to violate the timing constraints of real-time control systems by first creating low-latency links, which attract network traffic, and then delaying or dropping packets. Since the wormhole attack reroutes and replays valid messages, it cannot be detected using cryptographic mechanisms alone. We study the impact of the wormhole attack on the network flows and delays and introduce a passivity-based control-theoretic framework for modeling and mitigating the wormhole attack. We develop this framework for both the in-band and out-of-band wormhole attacks as well as complex, hereto-unreported wormhole attacks consisting of arbitrary combinations of in-and out-of band wormholes. By integrating existing mitigation strategies into our framework, we analyze the throughput, delay, and stability properties of the overall system. Through simulation study, we show that, by selectively dropping control packets, the wormhole attack can cause disturbances in the physical plant of a networked control system, and demonstrate that appropriate selection of detection parameters mitigates the disturbances due to the wormhole while satisfying the delay constraints of the physical system.
By exploiting the communication infrastructure among the sensors, actuators, and control systems, attackers may compromise the security of smart-grid systems, with techniques such as denial-of-service (DoS) attack, random attack, and data-injection attack. In this paper, we present a mathematical model of the system to study these pitfalls and propose a robust security framework for the smart grid. Our framework adopts the Kalman filter to estimate the variables of a wide range of state processes in the model. The estimates from the Kalman filter and the system readings are then fed into the χ2-detector or the proposed Euclidean detector. The χ2-detector is a proven effective exploratory method used with the Kalman filter for the measurement of the relationship between dependent variables and a series of predictor variables. The χ2-detector can detect system faults/attacks, such as DoS attack, short-term, and long-term random attacks. However, the studies show that the χ2-detector is unable to detect the statistically derived false data-injection attack. To overcome this limitation, we prove that the Euclidean detector can effectively detect such a sophisticated injection attack.
The security of Smart Grid, being one of the very important aspects of the Smart Grid system, is studied in this paper. We first discuss different pitfalls in the security of the Smart Grid system considering the communication infrastructure among the sensors, actuators, and control systems. Following that, we derive a mathematical model of the system and propose a robust security framework for power grid. To effectively estimate the variables of a wide range of state processes in the model, we adopt Kalman Filter in the framework. The Kalman Filter estimates and system readings are then fed into the χ2-square detectors and the proposed Euclidean detectors, which can detect various attacks and faults in the power system including False Data Injection Attacks. The χ2-detector is a proven-effective exploratory method used with Kalman Filter for the measurement of the relationship between dependent variables and a series of predictor variables. The χ2-detector can detect system faults/attacks such as replay and DoS attacks. However, the study shows that the χ2-detector detectors are unable to detect statistically derived False Data Injection Attacks while the Euclidean distance metrics can identify such sophisticated injection attacks.
Control system networks are increasingly being connected to enterprise level networks. These connections leave critical industrial controls systems vulnerable to cyber-attacks. Most of the effort in protecting these cyber-physical systems (CPS) from attacks has been in securing the networks using information security techniques. Effort has also been applied to increasing the protection and reliability of the control system against random hardware and software failures. However, the inability of information security techniques to protect against all intrusions means that the control system must be resilient to various signal attacks for which new analysis methods need to be developed. In this paper, sensor signal attacks are analyzed for observer-based controlled systems. The threat surface for sensor signal attacks is subdivided into denial of service, finite energy, and bounded attacks. In particular, the error signals between states of attack free systems and systems subject to these attacks are quantified. Optimal sensor and actuator signal attacks for the finite and infinite horizon linear quadratic (LQ) control in terms of maximizing the corresponding cost functions are computed. The closed-loop systems under optimal signal attacks are provided. Finally, an illustrative numerical example using a power generation network is provided together with distributed LQ controllers.
Anonymous communications networks, such as Tor, help to solve the real and important problem of enabling users to communicate privately over the Internet. However, in doing so, anonymous communications networks introduce an entirely new problem for the service providers - such as websites, IRC networks or mail servers - with which these users interact, in particular, since all anonymous users look alike, there is no way for the service providers to hold individual misbehaving anonymous users accountable for their actions. Recent research efforts have focused on using anonymous blacklisting systems (which are sometimes called anonymous revocation systems) to empower service providers with the ability to revoke access from abusive anonymous users. In contrast to revocable anonymity systems, which enable some trusted third party to deanonymize users, anonymous blacklisting systems provide users with a way to authenticate anonymously with a service provider, while enabling the service provider to revoke access from any users that misbehave, without revealing their identities. In this paper, we introduce the anonymous blacklisting problem and survey the literature on anonymous blacklisting systems, comparing and contrasting the architecture of various existing schemes, and discussing the tradeoffs inherent with each design. The literature on anonymous blacklisting systems lacks a unified set of definitions, each scheme operates under different trust assumptions and provides different security and privacy guarantees. Therefore, before we discuss the existing approaches in detail, we first propose a formal definition for anonymous blacklisting systems, and a set of security and privacy properties that these systems should possess. We also outline a set of new performance requirements that anonymous blacklisting systems should satisfy to maximize their potential for real-world adoption, and give formal definitions for several optional features already supported by some sche- - mes in the literature.
Security issues in computer networks have focused on attacks on end systems and the control plane. An entirely new class of emerging network attacks aims at the data plane of the network. Data plane forwarding in network routers has traditionally been implemented with custom-logic hardware, but recent router designs increasingly use software-programmable network processors for packet forwarding. These general-purpose processing devices exhibit software vulnerabilities and are susceptible to attacks. We demonstrate-to our knowledge the first-practical attack that exploits a vulnerability in packet processing software to launch a devastating denial-of-service attack from within the network infrastructure. This attack uses only a single attack packet to consume the full link bandwidth of the router's outgoing link. We also present a hardware-based defense mechanism that can detect situations where malicious packets try to change the operation of the network processor. Using a hardware monitor, our NetFPGA-based prototype system checks every instruction executed by the network processor and can detect deviations from correct processing within four clock cycles. A recovery system can restore the network processor to a safe state within six cycles. This high-speed detection and recovery system can ensure that network processors can be protected effectively and efficiently from this new class of attacks.