Biblio
This paper presents a unified approach for the detection of network anomalies. Current state of the art methods are often able to detect one class of anomalies at the cost of others. Our approach is based on using a Linear Dynamical System (LDS) to model network traffic. An LDS is equivalent to Hidden Markov Model (HMM) for continuous-valued data and can be computed using incremental methods to manage high-throughput (volume) and velocity that characterizes Big Data. Detailed experiments on synthetic and real network traces shows a significant improvement in detection capability over competing approaches. In the process we also address the issue of robustness of network anomaly detection systems in a principled fashion.
During recent years, establishing proper metrics for measuring system security has received increasing attention. Security logs contain vast amounts of information which are essential for creating many security metrics. Unfortunately, security logs are known to be very large, making their analysis a difficult task. Furthermore, recent security metrics research has focused on generic concepts, and the issue of collecting security metrics with log analysis methods has not been well studied. In this paper, we will first focus on using log analysis techniques for collecting technical security metrics from security logs of common types (e.g., Network IDS alarm logs, workstation logs, and Net flow data sets). We will also describe a production framework for collecting and reporting technical security metrics which is based on novel open-source technologies for big data.
Network traffic is a rich source of information for security monitoring. However the increasing volume of data to treat raises issues, rendering holistic analysis of network traffic difficult. In this paper we propose a solution to cope with the tremendous amount of data to analyse for security monitoring perspectives. We introduce an architecture dedicated to security monitoring of local enterprise networks. The application domain of such a system is mainly network intrusion detection and prevention, but can be used as well for forensic analysis. This architecture integrates two systems, one dedicated to scalable distributed data storage and management and the other dedicated to data exploitation. DNS data, NetFlow records, HTTP traffic and honeypot data are mined and correlated in a distributed system that leverages state of the art big data solution. Data correlation schemes are proposed and their performance are evaluated against several well-known big data framework including Hadoop and Spark.
Intrusion response is a new generation of technology basing on active defence idea, which has very prominent significance on the protection of network security. However, the existing automatic intrusion response systems are difficult to judge the real "danger" of invasion or attack. In this study, an immune-inspired adaptive automated intrusion response system model, named as AIAIM, was given. With the descriptions of self, non-self, memory detector, mature detector and immature detector of the network transactions, the real-time network danger evaluation equations of host and network are built up. Then, the automated response polices are taken or adjusted according to the real-time danger and attack intensity, which not only solve the problem that the current automated response system models could not detect the true intrusions or attack actions, but also greatly reduce the response times and response costs. Theory analysis and experimental results prove that AIAIM provides a positive and active network security method, which will help to overcome the limitations of traditional passive network security system.
Preserving the availability and integrity of networked computing systems in the face of fast-spreading intrusions requires advances not only in detection algorithms, but also in automated response techniques. In this paper, we propose a new approach to automated response called the response and recovery engine (RRE). Our engine employs a game-theoretic response strategy against adversaries modeled as opponents in a two-player Stackelberg stochastic game. The RRE applies attack-response trees (ART) to analyze undesired system-level security events within host computers and their countermeasures using Boolean logic to combine lower level attack consequences. In addition, the RRE accounts for uncertainties in intrusion detection alert notifications. The RRE then chooses optimal response actions by solving a partially observable competitive Markov decision process that is automatically derived from attack-response trees. To support network-level multiobjective response selection and consider possibly conflicting network security properties, we employ fuzzy logic theory to calculate the network-level security metric values, i.e., security levels of the system's current and potentially future states in each stage of the game. In particular, inputs to the network-level game-theoretic response selection engine, are first fed into the fuzzy system that is in charge of a nonlinear inference and quantitative ranking of the possible actions using its previously defined fuzzy rule set. Consequently, the optimal network-level response actions are chosen through a game-theoretic optimization process. Experimental results show that the RRE, using Snort's alerts, can protect large networks for which attack-response trees have more than 500 nodes.
This paper presents FlowNAC, a Flow-based Network Access Control solution that allows to grant users the rights to access the network depending on the target service requested. Each service, defined univocally as a set of flows, can be independently requested and multiple services can be authorized simultaneously. Building this proposal over SDN principles has several benefits: SDN adds the appropriate granularity (fine-or coarse-grained) depending on the target scenario and flexibility to dynamically identify the services at data plane as a set of flows to enforce the adequate policy. FlowNAC uses a modified version of IEEE 802.1X (novel EAPoL-in-EAPoL encapsulation) to authenticate the users (without the need of a captive portal) and service level access control based on proactive deployment of flows (instead of reactive). Explicit service request avoids misidentifying the target service, as it could happen by analyzing the traffic (e.g. private services). The proposal is evaluated in a challenging scenario (concurrent authentication and authorization processes) with promising results.
Internet into our physical world and making it present everywhere. This evolution is also raising challenges in issues such as privacy, and security. For that reason, this work is focused on the integration and lightweight adaptation of existing authentication protocols, which are able also to offer authorization and access control functionalities. In particular, this work is focused on the Extensible Authentication Protocol (EAP). EAP is widely used protocol for access control in local area networks such Wireless (802.11) and wired (802.3). This work presents an integration of the EAP frame into IEEE 802.15.4 frames, demonstrating that EAP protocol and some of its mechanisms are feasible to be applied in constrained devices, such as the devices that are populating the IoT networks.
The dazzling emergence of cyber-threats exert today's cyberspace, which needs practical and efficient capabilities for malware traffic detection. In this paper, we propose an extension to an initial research effort, namely, towards fingerprinting malicious traffic by putting an emphasis on the attribution of maliciousness to malware families. The proposed technique in the previous work establishes a synergy between automatic dynamic analysis of malware and machine learning to fingerprint badness in network traffic. Machine learning algorithms are used with features that exploit only high-level properties of traffic packets (e.g. packet headers). Besides, the detection of malicious packets, we want to enhance fingerprinting capability with the identification of malware families responsible in the generation of malicious packets. The identification of the underlying malware family is derived from a sequence of application protocols, which is used as a signature to the family in question. Furthermore, our results show that our technique achieves promising malware family identification rate with low false positives.
WiFi fingerprint-based localization is regarded as one of the most promising techniques for indoor localization. The location of a to-be-localized client is estimated by mapping the measured fingerprint (WiFi signal strengths) against a database owned by the localization service provider. A common concern of this approach that has never been addressed in literature is that it may leak the client's location information or disclose the service provider's data privacy. In this paper, we first analyze the privacy issues of WiFi fingerprint-based localization and then propose a Privacy-Preserving WiFi Fingerprint Localization scheme (PriWFL) that can protect both the client's location privacy and the service provider's data privacy. To reduce the computational overhead at the client side, we also present a performance enhancement algorithm by exploiting the indoor mobility prediction. Theoretical performance analysis and experimental study are carried out to validate the effectiveness of PriWFL. Our implementation of PriWFL in a typical Android smartphone and experimental results demonstrate the practicality and efficiency of PriWFL in real-world environments.
The innovations in communication and computing technologies are changing the way we carry-out the tasks in our daily lives. These revolutionary and disrupting technologies are available to the users in various hardware form-factors like Smart Phones, Embedded Appliances, Configurable or Customizable add-on devices, etc. One such technology is Bluetooth [1], which enables the users to communicate and exchange various kinds of information like messages, audio, streaming music and file transfer in a Personal Area Network (PAN). Though it enables the user to carry-out these kinds of tasks without much effort and infrastructure requirements, they inherently bring with them the security and privacy concerns, which need to be addressed at different levels. In this paper, we present an application-layer framework, which provides strong mutual authentication of applications, data confidentiality and data integrity independent of underlying operating system. It can make use of the services of different Cryptographic Service Providers (CSP) on different operating systems and in different programming languages. This framework has been successfully implemented and tested on Android Operating System on one end (using Java language) and MS-Windows 7 Operating System on the other end (using ANSI C language), to prove the framework's reliability/compatibility across OS, Programming Language and CSP. This framework also satisfies the three essential requirements of Security, i.e. Confidentiality, Integrity and Availability, as per the NIST Guide to Bluetooth Security specification and enables the developers to suitably adapt it for different kinds of applications based on Bluetooth Technology.
In smart grid, critical data like monitoring data, usage data, state estimation, billing data etc are regularly being talked among its elements. So, security of such a system, if violated, results in massive losses and damages. By compromising with security aspect of such a system is as good as committing suicide. Thus in this paper, we have proposed security mechanism in Advanced Metering Infrastructure of smart grid, formed as Mesh-Zigbee topology. This security mechanism involves PKI based Digital certificate Authentication and Intrusion detection system to protect the AMI from internal and external security attack.
Distributed mesh sensor networks provide cost-effective communications for deployment in various smart grid domains, such as home area networks (HAN), neighborhood area networks (NAN), and substation/plant-generation local area networks. This paper introduces a dynamically updating key distribution strategy to enhance mesh network security against cyber attack. The scheme has been applied to two security protocols known as simultaneous authentication of equals (SAE) and efficient mesh security association (EMSA). Since both protocols utilize 4-way handshaking, we propose a Merkle-tree based handshaking scheme, which is capable of improving the resiliency of the network in a situation where an intruder carries a denial of service attack. Finally, by developing a denial of service attack model, we can then evaluate the security of the proposed schemes against cyber attack, as well as network performance in terms of delay and overhead.
Establishing trust relationships between network participants by having them prove their operating system's integrity via a Trusted Platform Module (TPM) provides interesting approaches for securing local networks at a higher level. In the introduced approach on OSI layer 2, attacks carried out by already authenticated and participating nodes (insider threats) can be detected and prevented. Forbidden activities and manipulations in hard- and software, such as executing unknown binaries, loading additional kernel modules or even inserting unauthorized USB devices, are detected and result in an autonomous reaction of each network participant. The provided trust establishment and authentication protocol operates independently from upper protocol layers and is optimized for resource constrained machines. Well known concepts of backbone architectures can maintain the chain of trust between different kinds of network types. Each endpoint, forwarding and processing unit monitors the internal network independently and reports misbehaviours autonomously to a central instance in or outside of the trusted network.
Reduction of Quality (RoQ) attack is a stealthy denial of service attack. It can decrease or inhibit normal TCP flows in network. Victims are hard to perceive it as the final network throughput is decreasing instead of increasing during the attack. Therefore, the attack is strongly hidden and it is difficult to be detected by existing detection systems. Based on the principle of Time-Frequency analysis, we propose a two-stage detection algorithm which combines anomaly detection with misuse detection. In the first stage, we try to detect the potential anomaly by analyzing network traffic through Wavelet multiresolution analysis method. According to different time-domain characteristics, we locate the abrupt change points. In the second stage, we further analyze the local traffic around the abrupt change point. We extract the potential attack characteristics by autocorrelation analysis. By the two-stage detection, we can ultimately confirm whether the network is affected by the attack. Results of simulations and real network experiments demonstrate that our algorithm can detect RoQ attacks, with high accuracy and high efficiency.
Detection of high risk network flows and high risk hosts is becoming ever more important and more challenging. In order to selectively apply deep packet inspection (DPI) one has to isolate in real time high risk network activities within a huge number of monitored network flows. To help address this problem, we propose an iterative methodology for a simultaneous assessment of risk scores for both hosts and network flows. The proposed approach measures the risk scores of hosts and flows in an interdependent manner; thus, the risk score of a flow influences the risk score of its source and destination hosts, and also the risk score of a host is evaluated by taking into account the risk scores of flows initiated by or terminated at the host. Our experimental results show that such an approach not only effective in detecting high risk hosts and flows but, when deployed in high throughput networks, is also more efficient than PageRank based algorithms.
Denial-of-Service (DoS) and probe attacks are growing more modern and sophisticated in order to evade detection by Intrusion Detection Systems (IDSs) and to increase the potent threat to the availability of network services. Detecting these attacks is quite tough for network operators using misuse-based IDSs because they need to see through attackers and upgrade their IDSs by adding new accurate attack signatures. In this paper, we proposed a novel signal and image processing-based method for detecting network probe and DoS attacks in which prior knowledge of attacks is not required. The method uses a time-frequency representation technique called S-transform, which is an extension of Wavelet Transform, to reveal abnormal frequency components caused by attacks in a traffic signal (e.g., a time-series of the number of packets). Firstly, S-Transform converts the traffic signal to a two-dimensional image which describes time-frequency behavior of the traffic signal. The frequencies that behave abnormally are discovered as abnormal regions in the image. Secondly, Otsu's method is used to detect the abnormal regions and identify time that attacks occur. We evaluated the effectiveness of the proposed method with several network probe and DoS attacks such as port scans, packet flooding attacks, and a low-intensity DoS attack. The results clearly indicated that the method is effective for detecting the probe and DoS attack streams which were generated to real-world Internet.
Electrical Distribution Networks face new challenges by the Smart Grid deployment. The required metering infrastructures add new vulnerabilities that need to be taken into account in order to achieve Smart Grid functionalities without considerable reliability trade-off. In this paper, a qualitative assessment of the cyber attack impact on the Advanced Metering Infrastructure (AMI) is initially attempted. Attack simulations have been conducted on a realistic Grid topology. The simulated network consisted of Smart Meters, routers and utility servers. Finally, the impact of Denial-of-Service and Distributed Denial-of-Service (DoS/DDoS) attacks on distribution system reliability is discussed through a qualitative analysis of reliability indices.
There is an increasing need for wireless sensor networks (WSNs) to be more tightly integrated with the Internet. Several real world deployment of stand-alone wireless sensor networks exists. A number of solutions have been proposed to address the security threats in these WSNs. However, integrating WSNs with the Internet in such a way as to ensure a secure End-to-End (E2E) communication path between IPv6 enabled sensor networks and the Internet remains an open research issue. In this paper, the 6LoWPAN adaptation layer was extended to support both IPsec's Authentication Header (AH) and Encapsulation Security Payload (ESP). Thus, the communication endpoints in WSNs are able to communicate securely using encryption and authentication. The proposed AH and ESP compressed headers performance are evaluated via test-bed implementation in 6LoWPAN for IPv6 communications on IEEE 802.15.4 networks. The results confirm the possibility of implementing E2E security in IPv6 enabled WSNs to create a smooth transition between WSNs and the Internet. This can potentially play a big role in the emerging "Internet of Things" paradigm.
Shared resources are an essential part of cloud computing. Virtualization and multi-tenancy provide a number of advantages for increasing resource utilization and for providing on demand elasticity. However, these cloud features also raise many security concerns related to cloud computing resources. In this paper, we propose an architecture and approach for leveraging the virtualization technology at the core of cloud computing to perform intrusion detection security using hypervisor performance metrics. Through the use of virtual machine performance metrics gathered from hypervisors, such as packets transmitted/received, block device read/write requests, and CPU utilization, we demonstrate and verify that suspicious activities can be profiled without detailed knowledge of the operating system running within the virtual machines. The proposed hypervisor-based cloud intrusion detection system does not require additional software installed in virtual machines and has many advantages compared to host-based and network based intrusion detection systems which can complement these traditional approaches to intrusion detection.
Cyber intrusions to substations of a power grid are a source of vulnerability since most substations are unmanned and with limited protection of the physical security. In the worst case, simultaneous intrusions into multiple substations can lead to severe cascading events, causing catastrophic power outages. In this paper, an integrated Anomaly Detection System (ADS) is proposed which contains host- and network-based anomaly detection systems for the substations, and simultaneous anomaly detection for multiple substations. Potential scenarios of simultaneous intrusions into the substations have been simulated using a substation automation testbed. The host-based anomaly detection considers temporal anomalies in the substation facilities, e.g., user-interfaces, Intelligent Electronic Devices (IEDs) and circuit breakers. The malicious behaviors of substation automation based on multicast messages, e.g., Generic Object Oriented Substation Event (GOOSE) and Sampled Measured Value (SMV), are incorporated in the proposed network-based anomaly detection. The proposed simultaneous intrusion detection method is able to identify the same type of attacks at multiple substations and their locations. The result is a new integrated tool for detection and mitigation of cyber intrusions at a single substation or multiple substations of a power grid.
Intrusion Detection Systems (IDS) have become a necessity in computer security systems because of the increase in unauthorized accesses and attacks. Intrusion Detection is a major component in computer security systems that can be classified as Host-based Intrusion Detection System (HIDS), which protects a certain host or system and Network-based Intrusion detection system (NIDS), which protects a network of hosts and systems. This paper addresses Probes attacks or reconnaissance attacks, which try to collect any possible relevant information in the network. Network probe attacks have two types: Host Sweep and Port Scan attacks. Host Sweep attacks determine the hosts that exist in the network, while port scan attacks determine the available services that exist in the network. This paper uses an intelligent system to maximize the recognition rate of network attacks by embedding the temporal behavior of the attacks into a TDNN neural network structure. The proposed system consists of five modules: packet capture engine, preprocessor, pattern recognition, classification, and monitoring and alert module. We have tested the system in a real environment where it has shown good capability in detecting attacks. In addition, the system has been tested using DARPA 1998 dataset with 100% recognition rate. In fact, our system can recognize attacks in a constant time.
Denial of Service (DoS) and Distributed Denial of Service (DDoS) attack, exhausts the resources of server/service and makes it unavailable for legitimate users. With increasing use of online services and attacks on these services, the importance of Intrusion Detection System (IDS) for detection of DoS/DDoS attacks has also grown. Detection accuracy & CPU utilization of Data mining based IDS is directly proportional to the quality of training dataset used to train it. Various preprocessing methods like normalization, discretization, fuzzification are used by researchers to improve the quality of training dataset. This paper evaluates the effect of various data preprocessing methods on the detection accuracy of DoS/DDoS attack detection IDS and proves that numeric to binary preprocessing method performs better compared to other methods. Experimental results obtained using KDD 99 dataset are provided to support the efficiency of proposed combination.
IP spoofing based DDoS attack that relies on multiple compromised hosts in the network to attack the victim. In IP spoofing, IP addresses can be forged easily, thus, makes it difficult to filter illegitimate packets from legitimate one out of aggregated traffic. A number of mitigation techniques have been proposed in the literature by various researchers. The conventional Hop Count Filtering or probabilistic Hop Count Filtering based research work indicates the problems related to higher computational time and low detection rate of illegitimate packets. In this paper, DPHCF-RTT technique has been implemented and analysed for variable number of hops. Goal is to improve the limitations of Conventional HCF or Probabilistic HCF techniques by maximizing the detection rate of illegitimate packets and reducing the computation time. It is based on distributed probabilistic HCF using RTT. It has been used in an intermediate system. It has the advantage for resolving the problems of network bandwidth jam and host resources exhaustion. MATLAB 7 has been used for simulations. Mitigation of DDoS attacks have been done through DPHCF-RTT technique. It has been shown a maximum detection rate up to 99% of malicious packets.
Cloud computing is gaining ground and becoming one of the fast growing segments of the IT industry. However, if its numerous advantages are mainly used to support a legitimate activity, it is now exploited for a use it was not meant for: malicious users leverage its power and fast provisioning to turn it into an attack support. Botnets supporting DDoS attacks are among the greatest beneficiaries of this malicious use since they can be setup on demand and at very large scale without requiring a long dissemination phase nor an expensive deployment costs. For cloud service providers, preventing their infrastructure from being turned into an Attack as a Service delivery model is very challenging since it requires detecting threats at the source, in a highly dynamic and heterogeneous environment. In this paper, we present the result of an experiment campaign we performed in order to understand the operational behavior of a botcloud used for a DDoS attack. The originality of our work resides in the consideration of system metrics that, while never considered for state-of-the-art botnets detection, can be leveraged in the context of a cloud to enable a source based detection. Our study considers both attacks based on TCP-flood and UDP-storm and for each of them, we provide statistical results based on a principal component analysis, that highlight the recognizable behavior of a botcloud as compared to other legitimate workloads.
Today, beyond a legitimate usage, the numerous advantages of cloud computing are exploited by attackers, and Botnets supporting DDoS attacks are among the greatest beneficiaries of this malicious use. Such a phenomena is a major issue since it strongly increases the power of distributed massive attacks while involving the responsibility of cloud service providers that do not own appropriate solutions. In this paper, we present an original approach that enables a source-based de- tection of UDP-flood DDoS attacks based on a distributed system behavior analysis. Based on a principal component analysis, our contribution consists in: (1) defining the involvement of system metrics in a botcoud's behavior, (2) showing the invariability of the factorial space that defines a botcloud activity and (3) among several legitimate activities, using this factorial space to enable a botcloud detection.