Biblio
Traditional security measures for large-scale critical infrastructure systems have focused on keeping adversaries out of the system. As the Internet of Things (IoT) extends into millions of homes, with tens or hundreds of devices each, the threat landscape is complicated. IoT devices have unknown access capabilities with unknown reach into other systems. This paper presents ongoing work on how techniques in sensor verification and cyber-physical modeling and analysis on bulk power systems can be applied to identify malevolent IoT devices and secure smart and connected communities against the most impactful threats.
It is a challenging problem to preserve the friendly-correlations between individuals when publishing social-network data. To alleviate this problem, uncertain graph has been presented recently. The main idea of uncertain graph is converting an original graph into an uncertain form, where the correlations between individuals is an associated probability. However, the existing methods of uncertain graph lack rigorous guarantees of privacy and rely on the assumption of adversary's knowledge. In this paper we first introduced a general model for constructing uncertain graphs. Then, we proposed an algorithm under the model which is based on differential privacy and made an analysis of algorithm's privacy. Our algorithm provides rigorous guarantees of privacy and against the background knowledge attack. Finally, the algorithm we proposed satisfied differential privacy and showed feasibility in the experiments. And then, we compare our algorithm with (k, ε)-obfuscation algorithm in terms of data utility, the importance of nodes for network in our algorithm is similar to (k, ε)-obfuscation algorithm.
Collaborative Filtering (CF) is a successful technique that has been implemented in recommender systems and Privacy Preserving Collaborative Filtering (PPCF) aroused increasing concerns of the society. Current solutions mainly focus on cryptographic methods, obfuscation methods, perturbation methods and differential privacy methods. But these methods have some shortcomings, such as unnecessary computational cost, lower data quality and hard to calibrate the magnitude of noise. This paper proposes a (k, p, I)-anonymity method that improves the existing k-anonymity method in PPCF. The method works as follows: First, it applies Latent Factor Model (LFM) to reduce matrix sparsity. Then it improves Maximum Distance to Average Vector (MDAV) microaggregation algorithm based on importance partitioning to increase homogeneity among records in each group which can retain better data quality and (p, I)-diversity model where p is attacker's prior knowledge about users' ratings and I is the diversity among users in each group to improve the level of privacy preserving. Theoretical and experimental analyses show that our approach ensures a higher level of privacy preserving based on lower information loss.
Power grids are monitored by gathering data through remote sensors and estimating the state of the grid. Bad data detection schemes detect and remove poor data. False data is a special type of data injection designed to evade typical bad data detection schemes and compromise state estimates, possibly leading to improper control of the grid. Topology perturbation is a situational awareness method that implements the use of distributed flexible AC transmission system devices to alter impedance on optimally chosen lines, updating the grid topology and exposing the presence of false data. The success of the topology perturbation for improving grid control and exposing false data in AC state estimation is demonstrated. A technique is developed for identifying the false data injection attack vector and quantifying the compromised measurements. The proposed method provides successful false data detection and identification in IEEE 14, 24, and 39-bus test systems using AC state estimation.